

BY Developers FOR Developers

Storage for a New Generation of AI/ML

Presented by

Somnath Roy - Principal Engineer - Samsung Memory Solutions Lab

Current State of AI/ML

- Focus on Large-Scale AI/ML (at least >1PB storage for training data)
 - Large-Scale Use cases:
 - Fraud prevention and risk analysis
 - Natural Language Processing
 - Real-time price optimization
 - Autonomous driving
- Compute has evolved rapidly with new algorithms and GPUs
 - In fact with the advent of GPU direct, NVIDIA is claiming bottleneck is on storage
- Can large-scale storage performance keep up with compute?
 - High read BW requirement (>1TB/s per rack) for running AI training at scale with thousands of GPUs in parallel

DSS: Performant & Scalable Object Storage

Disaggregated Storage Solution(DSS)

Services

- Samsung developed open sourced <u>https://github.com/OpenMPDK/DSS</u>
- NVMeoF based S3 Service
- High Read Throughput Object Storage
- Disaggregated Storage and compute
- Shared everything architecture
- Zero copy key-value transfer
- Easy Scaling at Exabytes

Use Cases

- Large scale high READ throughput AI training
- Image Analytics
- Audio/Video Al
- Metaverse

DSS Enhanced Minio Object-Store

Stock Minio Shared-nothing architecture (Compute has to grow along with storage)

DSS Minio disaggregated, Shared-everything architecture (Compute and storage can grow independently)

Reference Minio + DSS deployment model for AMD

DSS Client Wrapper

- Bucket Abstraction
- Key Distribution
- Cluster Expansion
- Rebalance
- Standard S₃ Operations (Get/Put etc.)

DSS Deployment View

DSS GET Performance

Setup:

- Client 16x Dell PowerEdge R6525, 2 x DGX A100
- DSS S3 Server
 - 10x Dell PowerEdge R7525 Gen4 servers
 - Dual socket AMD EPYC 7742 64-Core
 - 1TB physical memory
 - 4xMellanox Dual port 100/200Gb (ConnectX-6)
- SSD 16x PM1733 4TB Gen4 NVMe SSD per DSS S3 server
- Total data set generated during test ~400TB
- Top chart is just DSS backend performance across 10 node, no S3 involved
- Tool used home grown dss test cli
- Bottom one with DSS optimized Minio
- Tool used standard S3-benchmark

AI Benchmarking Tool

- Benchmarking various storage solution based on NFS, S3 at AI training level
- Platform where developers can add their ML framework, custom data set, training method, models and storage backend
- Demo is showing a custom training with a custom data set that is only capturing data load time and BW from storage servers on NFS/S3

DSS S3 vs Standard NFS

Setup:

- Client 12xDell PowerEdge 740xd
- DSS S3 Server
 - 6x Dell PowerEdge R7525
 - AMD EPYC 7742 64-Core
 - Mellanox Dual port 200g (ConnectX-6)
- NFS server
 - 6xDell PowerEdge R6525
 - AMD EPYC 7742 64-Core
 - Mellanox Dual port 200g (ConnectX-6)
- SSD PM1733 4TB NVMe SSD

Scaling client nodes

IO flow during S₃ GET request

10 flow during S3 GET request for next Gen DSS (Gen2)

Benchmarking on the pipeline

- Showcase better TCO and performance with DSS and Samsung 32TB/16TB SSDs as an storage option for AI/ML training performance workload at scale
- Demonstrate with real AI training model running using AI benchmarking framework
- Use DSS to showcase better Throughput per U for NVIDIA Foundry: https://www.nvidia.com/en-us/data-center/dgx-foundry/

Baseline:

https://www.beegfs.io/c/beegfs-now-supports-nvidia-magnum-io-gpu/

BeeGFS + NetApp Benchmark Performance in NVIDIA Superpod

Benchmark Topology and Configuration(BeeGFS)

DGX-A100

- Install BeeGFS Client File System Driver
- Test Tools: GDSIO, DSS AI-Bench
- 2 Nodes, data set generated ~100TB

Dell R7525

- BeeGFS Open Source Software w/ support for GDS Direct (RDMA Data Transfers)
- 4 Node Cluster setup, 16x PM1733 4TB NVMe SSDs
- Use 2xR7525 as BeegFS server and other 2xR7525 as NVMeoF storage server
- Goal is to make setup similar to the configuration used (below) for baseline published

STORAGE DEVELOPER CONFERENCE

Reproduced the Baseline numbers in MSL Lab

Benchmark Topology and Configuration (DSS)

BeeGFS vs DSS Gen2 Results

BeeGFS vs DSS Gen2 - DGX Client Peak BW Tests

DSS Availability

Open Source Announcement

- https://github.com/OpenMPDK/DSS
 - https://github.com/OpenMPDK/dss-sdk
 - https://github.com/OpenMPDK/dss-ansible
 - https://github.com/OpenMPDK/dss-minio
 - https://github.com/OpenMPDK/dss-ecosystem

Complete Ecosystem

- AI Benchmarking Framework supporting user preferred training and models
- Client Wrappers supporting Pytorch and Tensorflow
- Host and Target Stack

Please take a moment to rate this session.

Your feedback is important to us.

Thank You

(som.roy@samsung.com)

