A SNIA. Event

STORAGE DEVELOPER CONFERENCE



BY Developers FOR Developers

# The Path to Autonomous Storage is Broken

Presented by Eric Wright (@DiscoPosse)
Technology Advocate, Magnition.io

What is preventing the industry from achieving fully autonomous storage?



2 | @2022 Storage Networking Industry Association. All Rights Reserved.





# Multi-Dimensional Challenges







4 | ©2022 Storage Networking Industry Association. All Rights Reserved.



# Manual Storage / Memory Management Now Infeasible

Applications and data requirements changing hourly





Increasing hardware complexity

### Manually-managed Storage / Memory Infrastructure

### Vulnerable to:

- Thrashing, Scan pollution
- Gross unfairness, Interference
- Unpredictable availability
- Data loss risks

- $\Rightarrow$  Overprovisioning
- ⇒ Lack of Control
- ⇒ Availability & Durability Risk









# How do we cross the chasm to fully autonomous storage and memory hierarchies?



# Autonomous Systems Require OODA Loops & Models





# **Autonomous Storage ML/Models Needed**



### **Self-Awareness**

Acceleration, braking steering, roll, wear/tear, weight distribution, battery discharge temperature and load models

### **Environment Awareness**

Maps, static obstacles, dynamic obstacles, object capabilities, terrain, distances, relative object velocities, live traffic, GPS, road conditions, weather, law enforcement, etc.



### **Self-Awareness**

Caches, memories, disks, data paths, latencies, link throughput limitations, media costs, data movement costs, performance capabilities, degraded performance, etc.

### **Environment Awareness**

Dynamic workloads, QoS constraints, competing traffic on links, dynamic laaS costs, failures, imminent failures, flash wear/tear, power constraints, temperature, dynamic resource costs, etc.





# **Autonomous Levels**



| Admin controls the storage device; device can detect and send alerts, etc.                                                       | Level 1 Operator Assistance    | Driver controls the car; car can alert driver to conditions, obstructions, etc.       |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------|
| Automated failure repair, backup, replication, recovery; Admin remains engaged                                                   | Level 2 Partial Automation     | Automated acceleration, steering; Driver remains engaged                              |
| Device manages many cost / performance tradeoffs; Admin must be ready to take over                                               | Level 3 Conditional Automation | Car manages most safety driving functions;<br>Driver must be ready to take control    |
| Device guarantees QoS constraints at lowest cost, is self-aware, self-troubleshooting; Admin has option to control               | Level 4 High Automation        | Car capable of performing all safety-critical functions; driver has option to control |
| Device is completely lights-out, hands-off, no control UI, only high-level policy controls; Admin install spares when instructed | Level 5 Fully Autonomous       | Vehicle completely driverless, no driving equipment (e.g. steering)                   |



# **Architecture for Fully Autonomous Storage**



Auto-tune, Auto Size, Reconfigure, QoS Control



# Fully Autonomous Storage / Memories are Self-Aware



# Fully Autonomous Storage Needs Must Continuously Answer

- · Is this performance good?
- Can performance be improved?
- How much Cache for App A vs B vs ...?
- What happens if I add / remove DRAM?
- · How much DRAM versus Flash?
- How to achieve 99%ile latency of X μs?
- · What if I add / remove workloads?
- Is there cache thrashing / pollution?
- · What if I change cache parameters?



# **Use Case #1: Autonomous QoS SLA**

### How?

- Users dial-in latency or throughput target and budgets
- Fully Autonomous Storage auto allocates just enough capacity to meet SLAs at all times

### **Value for Customer**

- Automated SLA achievement!
- · Set and Forget, ease of mind
- · Revenue disruption avoidance
- Improved margins
- Zero OpEx performance scaling
- Dramatically reduced service interruptions

## **Latency Guarantees**





# **Use Case #2: Autonomous Cost / Performance Optimization**

### How?

- · Real-time workload modeling
- · Resource allocation predictions
- Dynamic resource adjustment and isolation
- · Auto right-sizing

### **Value for Customer**

- Lowest total cost of ownership (TCO)
- Eliminate noisy neighbor problems
- Policy-driven operations
- Lower OpEx for infra teams
- · Predictive planning

Cache Size & Latency Reduction (Thrashing Remediation)



### Tenant Isolation







# **Modeling Storage Performance in Real-Time**





Learn performance model of applications and storage system
Predict the performance of workload as f(resources, params)





HOME > .DJI · INDEX

### Dow Jones Industrial Average

31,050.40 4.11% -1,330.94 Today

Sep 13, 3:47:15 PM UTC-4 · INDEXDJX · Disclaimer





# **Understanding Autonomous Performance Models**



Models help decide useful increments of change.

In this example, no benefit despite an 8x increase in budget.



18 | ©2022 Storage Networking Industry Association. All Rights Reserved.

# **Understanding Autonomous Performance Models**



Often, most operating points are highly inefficient.

This system is operating at the lowest ROI point; equivalent performance to 1/8 the budget.

Autonomous memory hierarchies should pick efficient operating points.



# **Sample Models For Production Applications**



Memory Tier Resource Allocation (GB)



20 | ©2022 Storage Networking Industry Association. All Rights Reserved.

# **Production Applications with Different Performance Policies**









22 | ©2022 Storage Networking Industry Association. All Rights Reserved.

# **Understanding Fully Autonomous Adaptation**





Same Workload. Real-time Performance Prediction under different policies.

Autonomous memory hierarchies would always pick the optimal operating parameters.

arameters.

STORAGE DEVELOPER CONFERENCE

S D @

23 | ©2022 Storage Networking Industry Association. All Rights Reserved.

# From CacheLab to Autonomous Storage





# **Fully Autonomous Storage is Self-Adaptive**



25 | ©2022 Storage Networking Industry Association. All Rights Reserved.

# **Fully Autonomous Performance Optimizations**



Thrash remediation algorithm

Convex hull interpolation Curve steering

Optimal curve bending cache-unfriendly workloads

hash-based emulation of cache sizes and depend on statistical self-similarity



# **Fully Autonomous Latency Targets**



**SD**€

# **Fully Autonomous Multi-Tier Allocation**



\* Can model network bandwidth as a function of cache misses from each tier





# Implement a custom evacuation algorithm

Use CacheLab to prove your algorithm is better



# **Fully Autonomous Storage is Within Reach**



This is you



This should be your customer





web: magnition.io

email: irfan@magnition.io

31 | ©2022 Storage Developer Conference ©. All Rights Reserved.





# Please take a moment to rate this session.

Your feedback is important to us.

