o %
& .'o'
.. .
[] * |
)
o, °., 90
. '. ‘o0 000
e . " 20000000
® - 000000 00
o ® 000000060
00000 ®
® 0000000
o000 o000 ©
. o 00000000 ©
000 © o0
° 0000000
® o000
Y
@ ®
. @
L]
@

STORAGE DEVELOPER CONFERENCE

=SDC

BY Developers FOR Developers

XNVMe and io_uring
NVMe passthrough

What does it mean for the SPDK NVMe driver?

Simon A. F. Lund (Samsung)

Agenda

How (and why) did SPDK start?
SPDK’s Motivation

Linux Storage Abstractions
XNVMe Overview
Performance Comparisons

Next Steps

=SDC
23
2| ©2023 SNIA. All Rights Reserved. e

How (and why) did SPDK start?

VA gk - ® “We have all of these SAS SSDs in this system, but
company can’t get all of the performance out of them.”

NVMe ratified but not yet e The performance problem was only going to get
commercially available worsel

OS support for NVMe ramping
quickly

* Including BSD-licensed FreeBSD drivers

RSt Xt Mo hvi ® DPDK already tackling this same problem for
division responsible for DPDK network packet processing

3| © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

SPDK’s Motivation

Break the software bottleneck for high-performance
storage workloads

Build an open-source community to innovate and
collaborate

Balance between "develop new” and “optimize
existing”

Broad set of abstractions and implementations

4]1© 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

SPDK and NVMe

Break the software

bottleneck Performant and efficient NVMe access is priority #1!

Build an open-source

: e Collaboration with xNVMe and Linux kernel
community

Balance between “develop
new” and “optimize existing”

e Improve SPDK’s ability to leverage Linux NVMe

Broad set of abstractions and

:) e Enable multiple ways of accessing NVMe with SPDK
implementations

5]© 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

Outline

= \Why
» What do you do, when the OS storage abstractions fail?
» What do you do, when the deployment environments fail?

= \What

» Device handles via generic and anonymous namespaces (e.g. /dev/ngOn1)
» Device communication via io_uring command (with NVMe Passthrough)
» SPDK Integration: xXNVMe and bdev_xnvme

= Performance Comparison
= Next Steps

6 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

Why? 1/2

General storage abstractions

=SDC
7 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e

Why: storage abstractions

* Generic abstractions

.
» Supporting a variety of devices in the Speak File
same fashion Soceik Ble:
: Syscall Gl EEL EEEEEEE CEEE TP
* Long-lived and well-known
abstractions of blocks and files FS Abstraction

!

Block Abstraction

Kernel
|0 Stack l
« When/how/why do abstractions e
fail for NVMe?
¢Speak NVMe

Device =

o nvm.

8| © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. z s D c23

Why: storage abstractions “speaking NVMe”

_ :
Speaklng NVMe - ol e
» Read/write using extended LBA formats el
. . . Speak Block
= Ext: directives / write_zeroes / copy i
= /NS: mgmt. send/receive, append sync
g pp ---- ----------- loctl() .
" Key-VaIue: FS Abstraction
store(k,v) / retrieve(v), list, delete, exists l
= New command-sets: Kernel B'ic“bs”acmn
Computational Storage 10 Stack ____
/dev/nvmeOn1
¢Speak NVMe
o dl71

9| © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. g s D @

Why: storage abstractions “speaking NVMe”

= Speaking NVMe | Smeak NV
= Read/write using extended LBA formats peelsilE
= Ext: directives / write_zeroes / copy speak Block
= /NS: mgmt. send/receive, append ____ ___________ slv;cctl() L
= Key-Value: FS Abstraction
store(k,v) / retrieve(v), list, delete, exists l
» New command-sets: Kernel s, N
Computational Storage 10 Stack ! ____
= Abstraction failure; must bypass e
OS abstractions to utilize devices é;s‘éeak“‘v“”e
=) v,

10 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. g s D @

Why: device handles

= Everything is a file with NVMe represented as
* NVMe Controllers as char devices (e.g. /dev/invme0)

* NVMe Namespaces as block devices (e.g. /dev/invmeOn1)
= Caveat: only for NVM and ZNS Command-Sets

11]1© 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

Why: device handles

= Everything is a file with NVMe represented as
* NVMe Controllers as char devices (e.g. /dev/invme0)

* NVMe Namespaces as block devices (e.g. /dev/invmeOn1)
= Caveat: only for NVM and ZNS Command-Sets

* Plug in a device with a command-set other than NVM/ZNS
* Only the controller handle appears (e.g. /dev/invme0)
= Device does not fit, or match assumptions of, the Linux Block Device model
= No representation of / FS entry to get a handle to the namespace

12 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

Why: device handles

= Everything is a file with NVMe represented as
* NVMe Controllers as char devices (e.g. /dev/invme0)

* NVMe Namespaces as block devices (e.g. /dev/invmeOn1)
= Caveat: only for NVM and ZNS Command-Sets

* Plug in a device with a command-set other than NVM/ZNS
* Only the controller handle appears (e.g. /dev/invme0)
= Device does not fit, or match assumptions of, the Linux Block Device model
= No representation of / FS entry to get a handle to the namespace

=» Abstraction failure; no means to get a handle to the namespace

13| © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

Why: device communication

= Efficiency via io_uring

* reducing the cost of crossing the border
between userland and kernel

= Shared memory (rings)
» |nstead of memory-transfers

= Resource registration
» Reduce lookup-cost

io_uring command opcodes

= PO”lng (IOPOLL | SQPOLL) IORING_OP_(READ | WRITE)V

IORING_OP_(READ | WRITE)

u BatCh i n g IORING_OP_(READ | WRITE)_FIXED

* One syscall = multiple commands

14 1 © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Userland

yscall Sl

Kernel
IO Stack

Device

FS Abstraction

]

Block Abstraction

.

NVMe Driver

/dev/nvmeOn1

ISpeak NVMe

21 1vm

=SD¢e

Why: device communication

= Efficiency via io_uring

* reducing the cost of crossing the border

between userland and kernel

= Shared memory (rings)
» |nstead of memory-transfers

= Resource registration
» Reduce lookup-cost

= Polling (IOPOLL | SQPOLL)

= Batching

io_uring command opcodes

IORING_OP_(READ | WRITE)V

IORING_OP_(READ | WRITE)

IORING_OP_(READ | WRITE)_FIXED

* One syscall = multiple commands

15] © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Userland

Kernel
IO Stack

Device

/ _ Speak NVMe

Speak Block |

sync

loctl()

FS Abstraction

]

Block Abstraction

.

NVMe Driver

/dev/nvmeOn1

ISpeak NVMe

21 1vm

=SD¢e

IfO operations Per Second as a function of 1/0-Depth

Why: device communication

=>» efficient scale

2007 loctl() + threadpool
. e =>in-efficient scale
= Speaking NVMe ool T - t
ioct
» Read/write using extended LBA formats o

= Ext: directives / write_zeroes / copy

= /NS: mgmt. send/receive, append

» Key-Value: store(k,v) / retrieve(v), list, delete, exists
» New command-sets: Computational Storage

=>»Facility: NVMe driver ioctl()

16 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

Why: device communication

= Speaking NVMe
» Read/write using extended LBA formats
= Ext: directives / write_zeroes / copy
= /NS: mgmt. send/receive, append
» Key-Value: store(k,v) / retrieve(v), list, delete, exists
» New command-sets: Computational Storage

=>»Facility: NVMe driver ioctl()

IfO operations Per Second as a function of 1/0-Depth

io_uring
20001 =Pefficient scale
150.0 loctl() + threadpool
» =>in-efficient scale
100.0 -

—_—

ioctl()
=>»no scale

=» Abstraction failure; no kernel facility to “Speak NVMe” efficiently

17 1 © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

=SD¢e

e °-c0%ec08e 0. _o000ece o0 0 c-eececess oo _oeeece eeo
Existing solutions

= Move the storage abstraction out of the kernel and into userland

=>» The SPDK Block Device abstraction (bdev)
=» The SPDK NVMe driver

So, when does this fail?

18 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved. g s D @

Why? 2/2

Deployment Environments

=SDC
19 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e

Why: deployment environments

= Deployment of SPDK Apps using the SPDK NVMe driver

» Requirement: detach the Kernel NVMe driver =» bind to vfio-pci/uio_generic

20 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved. g s D @

Why: deployment environments

= Deployment of SPDK Apps using the SPDK NVMe driver

» Requirement: detach the Kernel NVMe driver =» bind to vfio-pci/uio_generic

= HW Failure

= Other devices in the same iommu-group = No detachment
» Unsupported IOMMU / PCle bar address-space = binding failure

21]1© 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

Why: deployment environments

= Deployment of SPDK Apps using the SPDK NVMe driver

» Requirement: detach the Kernel NVMe driver =» bind to vfio-pci/uio_generic

= HW Failure

= Other devices in the same iommu-group = No detachment
» Unsupported IOMMU / PCle bar address-space = binding failure

= Cloud failure

» Sheer lack of NVMe devices = Encapsulated storage-device-services
» Restrictive environments

22 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

- 82-c8°2-280 0. _eeeece eeo occ-eececess oo _oeeece ee.
Why: io_uring command for SPDK?

= What do you do, when the deployment environment fails?
= Fallback: operating system managed (bdev_aio / bdev_uring)

23| © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved. g s D @

Why: io_uring command for SPDK?

= What do you do, when the deployment environment fails?
= Fallback: operating system managed (bdev_aio / bdev_uring)

= Enable deployment of SPDK in environments otherwise unavailable

= Enable deployment of SPDK with minimal performance hit
=» Goals of Linux and SPDK are aligned

24 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved. g s D @

Why: goals for Linux

An open-ended representation of NVMe devices for existing and new
NVMe Command-Sets with a fast-path for communication

Handles

=» Bring up devices regardless of Linux device model match
Communication

= Speak NVMe “natively”

=>» Scale as efficiently as io_uring

=>» Scale as efficiently as the SPDK NVMe Driver

25|© 2023 SNIA. © Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved. g s D @

What? 1/3

Generic device handles

=SDC
26 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e

_ © 02.028%05080 05 000050 000 05000000000 00 000050 005
What: a solution to handles

Handles
* NVMe generic char interface e.g. /dev/ing0On1

27 |1 © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved. g s D @

What: a solution to handles

Handles

* NVMe generic char interface e.g. /dev/ing0On1
= [nitial support: Linux 5.13 (June 2021)

* Brings up handles for namespaces with NVM and ZNS command-sets
= Command-set independence: Linux 6.0
» Brings up handles for namespaces with any command-set

28 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. g s D @

What: a solution to handles

Handles

* NVMe generic char interface e.g. /dev/ing0On1
= [nitial support: Linux 5.13 (June 2021)

* Brings up handles for namespaces with NVM and ZNS command-sets
= Command-set independence: Linux 6.0
» Brings up handles for namespaces with any command-set

Device files are provided regardless of a matching device model, \/
thereby enabling handles for existing and future NVMe command-sets

29 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved. g s D @

What? 2/3

Communication via io_uring command (io_uring_cmd)

=SDC
30 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e

What: io_uring command

= Generic facility to attach io_uring capabilities to a command provider
= Larger ring-entries embedding commands and their completions
= Command Provider (driver, file-system, etc.)

31]© 2023 SNIA. © Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved. g s D @

What: io_uring command

= Generic facility to attach io_uring capabilities to a command provider
= Larger ring-entries embedding commands and their completions
= Command Provider (driver, file-system, etc.)
= One such command Provider is the NVMe driver
* Providing NVMe passthrough commands

= Commands defined equivalent to NVMe driver IOCTLs
= NVMe driver IOCTL extended with iovec support

\

note: this was a requirement enabling non-bounce-buffer
utilization by the SPDK bdev abstraction

32| © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. g s D @

What: io_uring command

Handles

=>»Bring up devices regardless of
Linux device model match

Communication

= Speak NVMe “natively”/

=>» Scale as efficiently as io_uring?

=> Scale as efficiently as the SPDK
NVMe Driver?

F_or more: see Kanchan Joshi’_s
Linux Plumbers Conference slides

33 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Userland

Kernel

1O Stack

Device

Syscall gttt

Speak File

FS Abstraction

]

Speak NVMe

Speak Block

sync async

loctl()

lo_uring_cmd

Block Abstraction

.

/dev/nvmeOn1l

NVMe Driver

/dev/ngOn1

Speak NVMe

=SD¢e

https://lpc.events/event/16/contributions/1382/attachments/1119/2151/LPC2022_uring-passthru.pdf

What 3/3

SPDK Integration via xXNVMe (bdev_xnvme)

=SDC
34 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e

CORE API

Command(s)

|

Storage Device or File

= Core API

= Commands and Buffers
= Queues & Callbacks

= Command-Set Helpers
= NVM read / write / write_zeroes / copy
» /NS mgmt. send / receive / append
» KV store / retrieve / list / exists /delete

Callback

|->

Synchronous

Queue

SNOUOIYIUASY

Win32
Object Model

read()/write()

DevFs / SysFS
read()/write()
Block IOCTLs

NVMe IOCTLs
10CP

Thread Pools

.
= Command-Line Tools

libai
io

Thread Pools

T
el

POSIX aio

uring_c

= xnvme, Iblk, zoned, kvs —

1111111

SPDK Driv

Implementation

35| © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. :S—m

CORE API

Command(s)

|

Storage Device or File

= XNVMe is used for
» |/O interface independence
* Minimal abstraction cost
= Convenient command-line tools
» Rapid experimentation via Python

= Further details

SYSTORZ22 Presentation and Paper

https://www.youtube.com/watch?v=YoA6FVnc pU ‘

https://dl.acm.org/doi/abs/10.1145/3534056.3534936 —
Web: https://xnvme.io/

Callback

Synchronous
|->
SNOUOIYIUASY

Queue

DevFs / SysFS
I

Win32
Object Model

read()/write()

NVMe IOCTLs
10CP

Thread Pools

Thread Pools

i
ML

POSIX aio

read Pools
£
uring cmd

SPDK Driv
io_urin,

Implementation

36 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. ss—m

https://www.youtube.com/watch?v=YoA6FVnc_pU
https://dl.acm.org/doi/abs/10.1145/3534056.3534936
https://xnvme.io/

SPDK Integration: bdev_xnvme

= With SPDK v22.09 a new bdev
module is introduced: bdev_xnvme

* The xXNVMe bdev module calls into
the core xNVMe API
= A single bdev implementation for
= |[ibaio, io_uring, and io_uring_cmd
» Device-specific handling (zone mgmt.)
= Further details, Krishna K. Reddy

= SDC Presentation
https://www.youtube.com/watch?v=WbdChto6f tU

Applications

A\ 4

BlobFS

A

\ 4

Blobstore

v

BDEV Abstraction Layer

A

\ 4

SPDK
Drivers

\ 4

xNVMe

4

4
==

P

v

Linux

io_uring PT

]

37 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

HARDWARE

=SD¢e

https://www.youtube.com/watch?v=WbdCht6f_tU

Comparison: peak |IOPS for saturated CPU

lo_uring_cmd vs io_uring
io_uring_cmd vs SPDK NVMe Driver

SPDK Bdev implementations (aio, uring, xXNVMe)

=SDC

38 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved.

Comparison: system and software

= Core 15-12600, SMT enabled, Turbo-Boost disabled
» 4x Samsung 980 Pro 1TB (512 RR ~1.0M IOPS /4K RR 1.0M IOPS)
» 4x Samsung 980 Pro 2TB (512 RR ~0.8M IOPS /4K RR 0.8M IOPS)

= Device roofline ~8M IOPS (according to spec. Sheet)

= Software
* Linux 6.5
= flo 3.34
= XNVMe v0.7.1
» SPDK v23.04 + patches for xNVMe submodule updated to v0.7.1

39| © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. A s D @

Comparison: system and software

= | inux Kernel version 6.5

= Debian Bullseye kernel config with the following changes
= CONFIG_BLK_CGROUP=N
= CONFIG_BLK_WBT_MQ=N
= CONFIG _HZ=250
* CONFIG_RETPOLINE=N
= CONFIG_PAGE_TABLE_ISOLATION=N

= NVMe driver loaded with as
* modprobe -r nvme && modprobe nvme poll _queues=1
= /sys/block/{device}/queue/iostats set to O
» /sys/block/{device}/queue/nomerges set to 2
» /sys/block/{device}/queue/wbt lat usec setto 0

40 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

=SD¢e

Comparison: system and software

= Tools
= flo: t/io_uring via "one-core-peak.sh”
= flo: t/io_uring manually invocation
= bdevperf

= Logs of all runs are provided for inspection and reproducibility
= https://github.com/safl/sceb

= Also contains scripts, hw-info information, kernel-config etc.

41| © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. g s D @

https://github.com/safl/sceb

jO_uring vs. io_uring_cmd

Millions of 512 byte IOPS via io_uring

-n=#Devices -n2 -n2 -nl
IOPOLL -c16 —s16 NOPOLL SQPOLL
IOPOLL NOBATCH

1 1.17 1.16 1.16 1.16
2 2.32 2.32 1.33 2.33
3 2.24 3.18 1.35 2.54
4 2.18 4.16 1.36 2.39
5 2.10 4.12 1.38 2.43
6 2.03 3.97 1.39 2.50
7 2.03 3.82 1.39 2.36
8 2.02 3.97 1.39 2.36

42 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. g s D @

lO_uring vs.

Millions of 512 byte IOPS via io_uring

-n=#Devices
IOPOLL

1 1.17

2 2.32

3 2.24

4 2.18

5 2.10

6 2.03

7 2.03

8 2.02

43] © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

n2
-c16 —s16
IOPOLL

1.16

2.32

3.18

4.16

4.12

3.97

3.82
3.97

-n2
NOPOLL
NOBATCH

1.16

1.33

1.35

1.36

1.38

1.39

1.39
1.39

-nl

SQPOLL

1.16

2.33

2.54

2.39

2.43

2.50

2.36
2.36

lo_uring_cmd

Millions of 512 byte IOPS via io_uring_cmd

-n=#Devices
IOPOLL

1.16

2.32

2.23

2.18

2.09

2.03

2.02
2.02

n2
-c16 —s16
IOPOLL

1.16

2.31

3.26

4.10

4.35

4.63

4.86
4.85

-n2 -nl
NOPOLL SQPOLL
NOBATCH

1.16 1.16
1.33 2.30
1.35 2.54
1.37 2.52
1.38 2.42
1.39 2.49
1.38 2.51
1.38 2.39

=SD¢e

Eval: goals for Linux

An open-ended representation of NVMe devices for existing and new
NVMe Command-Sets with a fast-path for communication

Handles ‘/
=» Bring up devices regardless of Linux device model match

Communication ‘/
= Speak NVMe “natively” / io_uring 4.16

- . . . [' d 4.86
=>»Scale as efficiently as io_uring o-HneEm

=» Scale as efficiently as the SPDK NVMe Driver?

44 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved. g s D @

Comparison: IOPS via SPDK

= |/O generator

» bdevperf —q 128 —o0 512 —w randread —t10 <bdev_conf> -m
<variations>

= Two variations
» -m[0]; using a single core and no thread-sibling
» -m[0,1]; using a single core and its thread-sibling
= Equivalent comparison of SMT effect as is done by t/io_uring

45| © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

Comparison: IOPS via SPDK

= Satures a single SMT thread

46 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

Devices | Millions of 512 byte IOPS
via the SPDK NVMe Driver

-m|[0]
1 1.15
2 2.31
3 3.34
4 4.35
5 5.22
6 6.11
7 7.11
8 7.24

-m[0,8]

1.15
2.30
3.31
4.34
5.22
6.10
7.10

8.08

=SD¢e

Comparison: IOPS via SPDK

o io_uring 4.16 # Devices | Millions of 512 byte IOPS
| : .
Why the gap” o_uring cmd | 4.86 via the SPDK NVMe Driver

SPDK 8.08 -m[0] -m[0,8]
= Generic facility 1 1.15 1.15
= Does more than specialized user-space driver ’ 231 230
3 3.34 3.31
= Taps into generic kernel-infra
: : - _ 4 4.35 4.34
=» io_uring_cmd specific I/O path reduction s -
6 6.11 6.10
= Un-tapped optimizations 7 7.11 7.10
= Management of DMA Mapping 8 7.24 8.08

471 © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. g s D c23

Eval: goals for Linux

An open-ended representation of NVMe devices for existing and new
NVMe Command-Sets with a fast-path for communication

Handles ‘/
=» Bring up devices regardless of Linux device model match
Communication ‘/

= Speak NVMe “natively” ‘/ io_uring 4.16
= Scale as efficiently as io_uring ;OP—;éi"g—cmd :i:
=> Scale as efficiently as the SPDK NVMe Driver?X

Peak IOPS in Millions

48 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved. g S D @

Comparison: bdev implementations

= Compare the following
* bdev_xnvme vs bdev_uring
* bdev_xnvme vs bdev_aio
* bdev_xnvme with io-mechanisms: libaio / io_uring / io_uring_cmd

= Using bdevperf
» Compare single-device qd=1 for a sense of overhead

= Compare single-device qd=128 for a sense of scale

* Provide the data to motivating next steps for bdev_xnvme

49| © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

=SD¢e

Comparison:

SPDK bdevs using libaio

bdev xnvme vs bdev aio
bdev_xnvme: {io_mechanism=libaio}

=SDC
50 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved. e

bdev_aio vs bdev_xnvme

1.2 1w libaio {bdev_xnvme) —&— libaio (bdev_aio) 1.2 1w libaio (bdev_xnvme) —&— libaio (bdev_aio)
1.0 1 1.0 1
*— 3
0.8 0.8 -
§06 §06
. 4 .]
0.4 - 0.4 -
0.2 A . 0.2 A .
1 Device 8 Devices
0-0 T T T T T T . T T T T

0 20 40 EID 80 100 120 / o0 0 2|0 4IO EID 80 100 120
iodepth iodepth
* bdev_xnvme at scale with bdev_aio

51| © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. g s D @

Comparison:

SPDK bdevs using io_uring

bdev_xnvme vs bdev_uring
bdev_xnvme: {io_mechanism=io_uring}

=SDC
52 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved. e

bdev_uring vs bdev_xnvme

—e— uring bdev_xnvme
2—0— uring bdev_xnvme CCPU

—#— uring bdev_uring

2.5 1
2.0 A
1.5
%]
o
2
1.0 - -
+ v
- -
0.0 T T T T T T T
0 20 40 60 80 100 120
iodepth

* bdev_xnvme at scale with bdev_urin

53 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

—e— uring bdev_xnvme
2—0— uring bdev_xnvme CCPU

—#— uring bdev_uring

2.5 1
2.0

9
@ 1.5 4

k) —$
1.0 4
0.5 4

8 Devices
BID 160 l2|0

iodepth

0.0 T T T T
/ 0 20 40 60

=SD¢e

bdev_uring vs bdev_xnvme

—e— uring bdev_xnvme —#— uring bdev_uring —e— uring bdev_xnvme —#— uring bdev_uring
2—0— uring bdev_xnvme CCPU - 2—0— uring bdev_xnvme CCPU -
2.5 1 2.5 1
2.0 A 2.0 A
®
1.5 1.5
%] %]
3 3 v— —
1.0 - - 1.0 -
v &
- - - -

0.0

(IJ 2ID 4IO EID 80 100 120 / o0 0 20 40 60 80 100 120
iodepth iodepth
e bdev_xnvme at scale with bdev_uring /

* bdev_xnvme “out-scales” bdev_uring with IOPOLL enabled

54 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. g s D @

Comparison:

SPDK bdev using io_uring_cmd

bdev_xnvme vs bdev_uring
bdev_xnvme: {io_mechanism=io_uring_cmd}

Single device

=SDC
55 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e

bdev_uring vs bdev_xnvme

—e— uring bdev_xnvme
2—0— uring bdev_xnvme CCPU

2.5 1

2.0 4

1.5 4

iops

—#— uring bdev_uring

&

1.0 4

0.5

0.0

¢

1

2.5 1

2.0 1

1.5 1

iops

L - —8— ucmd bdev_xnvme

—4— ucmd bdev_xnvme CCPU

T T T T
0 20 40 60
iodepth

T
80

100

120

—&
1.0 1
e
v
0.5
T

1 Device

* bdev_xnvme (io_uring_cmd) > bdev_uring/

56 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

60
iodepth

1 Device

=SD¢e

bdev_uring vs bdev_xnvme

—e— uring bdev_xnvme —#— uring bdev_uring
2—0— uring bdev_xnvme CCPU - 1 e uemd bdev_xnvme —4— ucmd bdev_xnvme CCPU
2.5 7 2.5 1
2.0 2.0 A1
1.5 1.5 1
%3] wi
o o
=) =)
®
1.0 B 1.0 4
v &
- - - -
0.0 T T T T T T T I

0 20 40 60 80 100 120 / 60
iodepth iodepth
* bdev_xnvme (io_uring_cmd) > bdev_uring /

* bdev_xnvme (io_uring_cmd) > bdev_xnvme (io_uring)

57 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. g s D @

Comparison:

SPDK bdev using io_uring_cmd

bdev_xnvme vs bdev_uring
bdev_xnvme: {io_mechanism=io_uring_cmd}

Multiple device

=SDC

58 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

bdev_uring vs bdev_xnvme

—e— uring bdev_xnvme —#— uring bdev_uring
2—0— uring bdev_xnvme CCPU BATCH - 1 o ucmd bdev_xnvme —4— ucmd bdev_xnvme CCPU
2.5 2.5
.]
2.0 1 2.0 -
]
s 154 o 151 N
-
.S_ _‘_— __" .E_ v
1.0 1.0
- -
T T T 0.0 T T T T T T T

0.0

0 20 40 ii[éepth 80 100 120 / 0 20 40 s}zepth 80 100 120
* bdev_xnvme (io_uring_cmd) > bdev_uring
» Both with and without IOPOLL /
e bdev_xnvme (io_uring_cmd) > bdev_xnvme (io_uring)

59 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. g s D @

What are next steps?

60 | ©2023 Storage Developer Conference ©2023 Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved.

i

SDC

Next Steps: io_uring _cmd

= Handles / Encapsulation
= |/O access-control matching file-permissions on /dev/ng*n*
» Disable CAP_SYS_ADMIN for identify-commands (ns,ns-cs,ctrlr,ctrlr-cs,etc.)

=» Enable non-root access to device information such as maximum-data-transfer-
size (MDTS), device properties

= Communication
» |nvestigate potentials for large-block-sizes / hugepages
» |nvestigate DMA pre-mapping

61| © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

Next Steps: io_uring _cmd

= Handles / Encapsulation‘/ DON E

= |/O access-control matching file-permissions on /dev/ng*n*
» Disable CAP_SYS_ADMIN for identify-commands (ns,ns-cs,ctrlr,ctrlr-cs,etc.)

=» Enable non-root access to device information such as maximum-data-transfer-
size (MDTS), device properties

= Communication
» |nvestigate potentials for large-block-sizes / hugepages
» |nvestigate DMA pre-mapping

62 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

Next Steps: bdev_xnvme

= Efficiency; match the IOPS rate achieved by the other bdevs
= Exploring opportunities to enable batching
» Performance “policy” e.g. “conserve_cpu” to disable optimizations

» Otherwise: auto-enable io_uring optimizations where applicable and
gracefully degrade in case of lacking system support

= Functionality
= NVM commands: Write Zeroes, Flush
» /NS commands: (Zone Management Send/Receive)

= Deployment on Windows (IOCP and IORING)
=» Broaden SPDK deployment while matching interface efficiency

63 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. A s D @

Next Steps: bdev_xnvme

exceed
\/- Efficiency; mateh the IOPS rate achieved by the other bdevs

V' Exploring opportunities to enable batching
v Performance “policy” e.g. “conserve_cpu’” to disable optimizations

v™® Otherwise: auto-enable io_uring optimizations where applicable and
gracefully degrade in case of lacking system support

= Functionality
= NVM commands: Write Zeroes, Flush
» /NS commands: (Zone Management Send/Receive)

= Deployment on Windows (IOCP and IORING)
=» Broaden SPDK deployment while matching interface efficiency

64 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

Next Steps: xXNVMe

= Currently supported \/
* |ORING_SETUP_{IOPOLL|SQPOLL|SINGLE ISSUER}
» Resource-registration (files)
» Batching: done on-behalf of the user via delayed submission

= Currently missing
* |ORING_SETUP_{COOP|DEFER} TASKRUN
» Resource-registration (buffers, rings)

= General optimizations: sqe-reuse, alignment, command-
construction

65 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. A s D @

So, what does it mean for SPDK?

* The xXNVMe bdev shows promise of encapsulating Linux kernel
NVMe interface for the bdev abstraction

= Single bdev to handle libaio, io_uring, and io_uring_cmd
= Single bdev to handle zone-management

= A wider range of deployment of SPDK Applications
= Closer collaboration and integration of storage eco-systems
= \What does it mean for the SPDK NVMe driver?

66 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsun g/ GOST. All Rights Reserved. g s D @

= Collaboration

» Reproducing io_uring_cmd vs SPDK NVMe benchmarks

* Linux Kernel io_uring_cmd optimizations

» SPDK bdev_xnvme optimizations and functional expansion
= XNVMe optimization and functional expansion

= Link to previous presentation at SPDK Virtual Forum 2022
= https://youtu.be/aYALmcP6PDU?si=H-TC CJWgERzrd8W

= Contact
= SPDK Slack Channels: https://spdk-team.slack.com/
» Samsung GOST / xNVMe @ Discord: https://discord.gg/XCbBX9DmKf

67 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. e s D @

https://youtu.be/aYALmcP6PDU?si=H-TC_CJWgERzrd8W
https://spdk-team.slack.com/
https://discord.gg/XCbBX9DmKf

Please take a moment to rate this session.

Your feedback is important to us.

68 | © 2023 SNIA. © Simon A. F. Lund / SSDR / Samsung / GOST. All Rights Reserved. g s D @

	xNVMe and io_uring NVMe passthrough
	Agenda
	How (and why) did SPDK start?
	SPDK’s Motivation
	SPDK and NVMe
	Outline
	Why? 1/2
	Why: storage abstractions
	Why: storage abstractions “speaking NVMe”
	Why: storage abstractions “speaking NVMe”
	Why: device handles
	Why: device handles
	Why: device handles
	Why: device communication
	Why: device communication
	Why: device communication
	Why: device communication
	Existing solutions
	Why? 2/2
	Why: deployment environments
	Why: deployment environments
	Why: deployment environments
	Why: io_uring command for SPDK?
	Why: io_uring command for SPDK?
	Why: goals for Linux
	What? 1/3
	What: a solution to handles
	What: a solution to handles
	What: a solution to handles
	What? 2/3
	What: io_uring command
	What: io_uring command
	What: io_uring command
	What 3/3
	Slide Number 35
	Slide Number 36
	SPDK Integration: bdev_xnvme
	Comparison: peak IOPS for saturated CPU
	Comparison: system and software
	Comparison: system and software
	Comparison: system and software
	io_uring vs. io_uring_cmd
	io_uring vs. io_uring_cmd
	Eval: goals for Linux
	Comparison: IOPS via SPDK
	Comparison: IOPS via SPDK
	Comparison: IOPS via SPDK
	Eval: goals for Linux
	Comparison: bdev implementations
	Comparison:��SPDK bdevs using libaio
	bdev_aio vs bdev_xnvme
	Comparison:��SPDK bdevs using io_uring
	bdev_uring vs bdev_xnvme
	bdev_uring vs bdev_xnvme
	Comparison:��SPDK bdev using io_uring_cmd
	bdev_uring vs bdev_xnvme
	bdev_uring vs bdev_xnvme
	Comparison:��SPDK bdev using io_uring_cmd
	bdev_uring vs bdev_xnvme
	�What are next steps?
	Next Steps: io_uring_cmd
	Next Steps: io_uring_cmd
	Next Steps: bdev_xnvme
	Next Steps: bdev_xnvme
	Next Steps: xNVMe
	So, what does it mean for SPDK?
	Thanks!
	Please take a moment to rate this session.

