
1 | ©2023 Micron Technology, Inc. All Rights Reserved.

Virtual Conference
September 28-29, 2021

Understanding Applications
Through NVMe Driver

Tracing Using BPF

John Mazzie
Member of Technical Staff, Systems Performance Engineer

Micron Technology, Inc.

2 | ©2023 Micron Technology, Inc. All Rights Reserved.

Agenda

BPF and the NVMe Driver

Application Analysis: MLPerf™ Storage

3 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

BPF and the NVMe Driver

4 | ©2023 Micron Technology, Inc. All Rights Reserved.

BPF Overview
4

 Originally “Berkeley Packet Filter”
 Developed to analyze network traffic

 Integrated with kernel
 Executes sandbox programs in kernel

 Used to trace, profile and monitor
 Utilizes a just-in-time compiler
 Verification Engine to protect kernel space
 Various features supported in different kernel versions

 Kernel 3.18 – eBPF VM
 Kernel 5.5 – BPF Trampoline support

 BPF stack (Kernel) is limited to 512 bytes
 Use maps to increase memory availability

5 | ©2023 Micron Technology, Inc. All Rights Reserved.

Methods of Tracing Kernel/Drivers
5

 Tracepoints
 Stable interface

 Managed by developers over multiple kernel versions
 Limited to the data provided by tracepoint.

 Kprobes (Kernel Probes – kprobe/kretprobe)
 Can attach/register probe to virtually any instruction.

 Attachment to none kernel methods/functions requires debug kernel.
 Can access data not directly provided.
 Unstable interface

 Kernel Functions are not stable across versions
 BPF Trampoline (kfunc/kretfunc and fentry/fexit)

 Interface is similar to kprobes
 Reduced overhead from kprobes
 Doesn’t cause events to be missed due to interruption
 Requires kernel support (Added in mainline kernel 5.5)

6 | ©2023 Micron Technology, Inc. All Rights Reserved.

Need
6

Original Multiple Tools
 Blktrace

 Used to analyze read/write pattern that was going to the device at the block layer
 Requires post processing to get necessary output

 Nvmelat
 Bpftrace based tool, to give latency histogram of transactions at the driver layer
 Could miss some transactions

New Tool
 Data processing done in line
 Collects data for every transaction

7 | ©2023 Micron Technology, Inc. All Rights Reserved.

Linux Storage Stack
7

Block driver (nvme)

Write/read data

BIOs

Requests

HW IRQ handling

Enqueue
Tasks

Applications

VFS/File System

Block
(Request Q , I/O schedule, plug/un-

plug)

Direct
I/O

Page
cache

Host Bus
Driver

Storage Device

BIOs

Data
Transfer

nvmetrace

blktrace

Dma
mapping

IOMMU

Host RAM

Complete
Tasks

Host Bus
Driver

Dma
unmapping

8 | ©2023 Micron Technology, Inc. All Rights Reserved.

NVMeTrace
8

Collections information on every transaction in the nvme driver.
 Starting LBA
 Transaction Size/Length
 Start Time/Completion Time/Latency
 Process ID/Name
 Device
 Queue ID
 Transaction Type

 Read, write, flush, admin…

Developed using libbpf
Kernel version specific (sometimes)

9 | ©2023 Micron Technology, Inc. All Rights Reserved.

Why Libbpf?
9

 Bpftrace
 High level scripting language
 Helpful to build tools quickly
 Built on bcc and libbpf
 Limited control over implementation

 Libbpf
 More difficult entry point
 More detailed control over implementation

 Kernel space handlers
 User space processing and output

 CO-RE (Compile Once – Run Everywhere)
 Can be done, might be difficult to implement depending on tool requirements

10 | ©2023 Micron Technology, Inc. All Rights Reserved.

Code Flow
10

 Kernel Space
 Memory Maps

 Store data in program while it’s being processed.
 Use Per CPU memory maps to avoid locking of map.

 Ring Buffer
 Used to transfer processed data to user space.

 Three handlers tracing functions in the NVMe driver
 nvme_setup_discard

 Handles parsing multiple discards sent as single DSM command
 nvme_submit_cmd

 Handles submission of transactions to the NVMe device queue
 Collect information about the transaction and store in a memory map

 nvme_complete_rq
 Handles completion of transactions, called when interrupt is activated.
 Get completion time of transaction
 Calculate latency
 Put processed data on ring buffer

 User Space
 Loads BPF application
 Verification is done by the JIT compiler/BPF VM
 Handles data passed through from kernel space

11 | ©2023 Micron Technology, Inc. All Rights Reserved.

Request/Command Structure
11

 Request
 Structure containing data from block layer provided to NVMe Driver

 nvme_iod
 Structure containg Nvme I/O data.
 Exists immediately after request in memory
 Contains nvme_request, nvme_command, nvme_queue

 Pointers for all structures are not passed into each traced function
 Limits direct access and reusability of code across kernel versions
 Tool needs access to request and nvme_command in all functions

 Getting data from nvme_iod and request requires moving around memory
 Jumping between structures in memory requires knowledge of the specific structures

 Size, members, relative memory locations
 Function interfaces and structures are not stable across kernel version

 Kernel versions could require recompile, or even rewrite of handler logic

12 | ©2023 Micron Technology, Inc. All Rights Reserved.

nvme_setup_discard Handler
12

 Loops in BPF are hard
 Must have a defined end
 JIT compiler does a basic check
 Loop helper exists in newer

kernel versions – bpf_loop

 Discards are sent through Data
Set Management (DSM)
command
 Up to 256 discards per DSM

command
 Need to loop through individual

 SEC("fentry/nvme_setup_discard")
int BPF_PROG(do_nvme_setup_discard, struct nvme_ns *ns, struct request *req, struct nvme_command *cmnd)
{
 int temp_index;
 struct bio *_bio = BPF_CORE_READ(req, bio);

 // max ranges = 256 for discard DSM command.
 for (int index = 0; index < 256; index++) {
 // Can't use index directly because verifier thinks it can be changed when used in bpf_map_lookup_elem
 temp_index = index;
 struct discard_data *temp_discard_data = bpf_map_lookup_elem(&discard_heap, &temp_index);
 if (temp_discard_data) {
 if (_bio == NULL) {
 temp_discard_data->slba = 0;
 temp_discard_data->length_bytes = 0;
 temp_discard_data->length_lbas = 0;
 break;
 }
 temp_discard_data->slba = BPF_CORE_READ(_bio, bi_iter.bi_sector) >> (BPF_CORE_READ(ns, lba_shift) - 9);
 temp_discard_data->length_bytes = BPF_CORE_READ(_bio, bi_iter.bi_size);
 temp_discard_data->length_lbas = temp_discard_data->length_bytes >> BPF_CORE_READ(ns, lba_shift);
 _bio = BPF_CORE_READ(_bio, bi_next);
 } else {
 break;
 }
 }
 return 0;
}

13 | ©2023 Micron Technology, Inc. All Rights Reserved.

nvme_submit_cmd Handler
13

 Generate pointers to
necessary memory locations
for structures
 Check if memory is available

on the heap
 Start collecting available data

for the event
 Check if it’s a non-admin

command
 Length = 1 (No device name)

 Stores collected information
in event_map for use in
nvme_complete_rq handler

 SEC("fentry/nvme_submit_cmd")
int BPF_PROG(do_nvme_submit_cmd, struct nvme_queue *nvmeq, struct nvme_command *cmd, bool write_sq)
{
 struct nvme_iod *iod = container_of(cmd, struct nvme_iod, cmd);
 struct request *req = blk_mq_rq_from_pdu(iod);
 __u64 req_address = (__u64)req;
 int index = 0;

 struct event *temp_event = bpf_map_lookup_elem(&heap, &index);

 if (temp_event) {
 int length;

 temp_event->qid = BPF_CORE_READ(nvmeq, qid);
 temp_event->pid = bpf_get_current_pid_tgid() >> 32;
 bpf_get_current_comm(temp_event->process_name, sizeof(temp_event->process_name));
 temp_event->opcode = BPF_CORE_READ(cmd, common.opcode);

 length = bpf_probe_read_str(temp_event->device_name, sizeof(temp_event->device_name), BPF_CORE_READ(req, rq_disk, disk_name));
 if (length > 1) {
 if (temp_event->opcode == nvme_cmd_read || temp_event->opcode == nvme_cmd_write) {
 __u32 size = 511;

 temp_event->slba = BPF_CORE_READ(cmd, rw.slba);
 temp_event->length_bytes = BPF_CORE_READ(req, __data_len);
 temp_event->length_lbas = BPF_CORE_READ(cmd, rw.length) + 1;

 } else if (temp_event->opcode == nvme_cmd_dsm) {
 // slba, length_bytes, and length_lbas get handled with nvme_setup_discard
 // Setting to 0 until set at completion
 temp_event->slba = 0;
 temp_event->length_bytes = 0;
 temp_event->length_lbas = 0;
 } else {
 temp_event->slba = 0;
 temp_event->length_bytes = 0;
 temp_event->length_lbas = 0;
 }
 } else { //Admin Command
 temp_event->slba = 0;
 temp_event->length_bytes = 0;
 temp_event->length_lbas = 0;
 }

 temp_event->start_time_ns = bpf_ktime_get_ns();
 bpf_map_update_elem(&event_map, &req_address, temp_event, BPF_ANY);
 }
 return 0;

14 | ©2023 Micron Technology, Inc. All Rights Reserved.

nvme_complete_rq Handler
14

Gets matching information
from request in event_map
Reserves space on the ring

buffer
Calculates latency
Writes all collected data to

ring buffer for user space
processing.

SEC("fentry/nvme_complete_rq")
int BPF_PROG(do_nvme_complete_rq, struct request *req)
{
 __u64 req_address = (__u64)req;
 struct event *info = bpf_map_lookup_elem(&event_map, &req_address);

 if (info) {

 struct event *e;
 e = bpf_ringbuf_reserve(&ring_buffer, sizeof(*e), 0); //This is allocating too slow
 if (!e) {
 bpf_printk("BUFFER FULL!\n");
 return 0;
 }

 e->start_time_ns = info->start_time_ns;
 e->end_time_ns = bpf_ktime_get_ns();
 e->latency_ns = e->end_time_ns - e->start_time_ns;
 e->qid = info->qid;
 e->pid = info->pid;
 bpf_probe_read_str(e->process_name, sizeof(e->process_name), info->process_name);
 bpf_probe_read_str(e->device_name, sizeof(e->device_name), info->device_name);
 e->opcode = info->opcode;
 e->slba = info->slba;
 e->length = info->length;

 bpf_map_delete_elem(&event_map, &req_address);

 bpf_ringbuf_submit(e, 0);
 }
 return 0;
}

15 | ©2023 Micron Technology, Inc. All Rights Reserved.

Example Output
15

start_time_ns,end_time_ns,latency_ns,process_name,pid,device,qid,slba,length_bytes,length_lbas,opcode
945661828630244,945661828679823,49579,systemd-udevd,823,nvme2n1,18,0,4096,8,2
945661828720722,945661828744932,24210,systemd-udevd,823,nvme2n1,18,8,4096,8,2
945661828762102,945661828780561,18459,systemd-udevd,823,nvme2n1,18,24,4096,8,2
945661833805074,945661833822884,17810,systemd-udevd,823,nvme2n1,18,0,4096,8,2
945661833841224,945661833856614,15390,systemd-udevd,823,nvme2n1,18,8,4096,8,2
945661833869263,945661833884423,15160,systemd-udevd,823,nvme2n1,18,24,4096,8,2
945661838342307,945661838359766,17459,systemd-udevd,823,nvme2n1,18,0,4096,8,2
945661838394956,945661838431165,36209,systemd-udevd,823,nvme2n1,41,8,4096,8,2
945661838451645,945661838466984,15339,systemd-udevd,823,nvme2n1,41,24,4096,8,2
945661839510777,945661839552986,42209,systemd-udevd,55562,nvme2n1,31,30005842432,4096,8,2
945661839579855,945661839596465,16610,systemd-udevd,55562,nvme2n1,31,30005842592,4096,8,2
945661839609995,945661839625125,15130,systemd-udevd,55562,nvme2n1,31,0,4096,8,2

16 | ©2023 Micron Technology, Inc. All Rights Reserved.

BPF Helpers
16

 bpf_ktime_get_ns()
 Get current kernel timestamp

 bpf_get_current_comm()
 Gets process name of process that triggered event being traced

 bpf_get_current_pid_tgit()
 Gets PID of process that triggered event being traced

 BPF_CORE_READ()
 Reads memory space of structures
 Can read arbitrarily deep through structures with pointers.

 bpf_probe_read_kernel()
 bpf_core_read
 Read arbitrary memory location

 bpf_probe_read_str()
 bpf_core_read_str
 Reads string value and stores it in another point in memory

17 | ©2023 Micron Technology, Inc. All Rights Reserved.

BPF CO-RE
17

https://nakryiko.com/posts/bpf-core-reference-guide/

 CO-RE
 Compile Once – Run Everywhere

 Compile once and execute on multiple kernel versions

 Helper functions and methodology that help develop portable applications
 BTF
 BPF Type Format
 Debug information to describe all kernel/driver type information
 Used by BPF Verifier

 Finds matching structures and gets offsets for structure members
 Enables ability to not have to fully define a structure to access a member of that structure

 Build Kernel with CONFIG_DEBUG_INFO_BTF=y

18 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Application Analysis
MLPerf™ Storage

19 | ©2023 Micron Technology, Inc. All Rights Reserved.

 How do we size storage
for AI training?
 MLCommons produces many AI

workload benchmarks
 Training, Inference, Tiny, HPC,

etc
 Training benchmark has been scaled

to nearly 4 thousand accelerators
 The performance of storage has

been optimized out of the Training
benchmark

 Can’t be used for measuring storage
workload

 Options:
 De-optimize the training process
 Develop a new process

 De-optimizing
 Limit memory to the system to prevent filesystem caching
 Some datasets are very small, and it is impossible to find a

memory capacity that allows the models to train properly
without caching the entire dataset

 Develop a new process
 Must do IO in the same way as the real AI training process
 Must reduce hardware requirements for testing

 (few storage vendors have hundreds of GPU systems for load
testing)

 Must provide larger datasets to limit effect of filesystem
caching

MLPerf™

20 | ©2023 Micron Technology, Inc. All Rights Reserved.

 Using the tool DLIO from Argonne
Leadership Computing Facility
(ALCF)
 Uses the same data loaders as the real workload

(pytorch, tensorflow, etc) to move data from storage to
CPU memory

 Implements a sleep in the execution loop for each batch
 Sleep time is computed from running the real

workload
 A sleep time and batch size effectively defines an

accelerator
 How much data per batch and how long to spend on

forward & backward passes
 Scale up/out testing performed by adding clients running

DLIO and using MPIO for multiple emulated accelerators
per client

MLPerf™ Storage
 Defines a set of configurations to represent results

submitted to MLPerf™ Training
 Version 0.5:

 BERT & Unet3D (NLP and 3D medial imaging)
 Allows scale out and scale up testing without requiring

GPUs
 Reported metrics are:

 Samples per Second
 Number of supported accelerators

 Requires maintaining a minimum Accelerator Utilization
for a passed test

 Still in early development
 Get involved!

 https://mlcommons.org/en/groups/research-storage/

MLPerf™ Storage Benchmark

https://mlcommons.org/en/groups/research-storage/

21 | ©2023 Micron Technology, Inc. All Rights Reserved.

Unet3D
I/O throughput versus time

 For a single Accelerator (top plot)
 Data transferred in 1 second

intervals ranges from 0 to 600 MB
with peaks to 1,600 MB

 The peaks correspond to the start
of an epoch where the prefetch
buffer is filled before starting
compute

 For 15 accelerators (bottom plot)
 Near the drive’s limit (17

accelerators)
 Workload continues to have bursty

behavior with some 1 second
intervals showing 0 MB
transferred

 While the system does hit the maximum
throughput of the device, the low QD
and idle times result in an average
throughput that is 15 – 20% less than
max supported
 Traditional tools will not show the

peak throughput as measured
here

1 ACC

15 ACC

22 | ©2023 Micron Technology, Inc. All Rights Reserved.

Unet3D
Queue depth versus time

 1 accelerator (top
plot):
 Over time, queue depth

remains low (less than 10)
 After initial ramp, QD remains

constant even during epoch
starts which showed higher
MB per second

 15 accelerators
(bottom plot):
 Queue depth peaks at 145

early then stabilized at 120
and below

 This heavily loaded system
still has low Queue Depth
operations

1 ACC

15 ACC

23 | ©2023 Micron Technology, Inc. All Rights Reserved.

Unet3D
Percent of I/Os by queue depth for 1 accelerator

 For 1 accelerator:
 Less than 1% of IOs are at Queue

Depths 2-5
 Nearly 50% of IOs were inserted as

the only IO in the queue
 Nearly 50% were inserted as the

second IO in the queue (QD1)

 Note: The specific transfer size is
dependent on the device, block
settings, and filesystem settings
but we consistently see the max
available size (512KB – 1280KB)

24 | ©2023 Micron Technology, Inc. All Rights Reserved.

Unet3D
Percent of I/Os by queue depth for 15 accelerator

 For 15 accelerators:
 We see a distribution of Queue

Depths
 The bump at low QDs is

important
 A not-insignificant number of IOs

are inserted at very low Queue
Depths (less than 5)
 This behavior introduces idle

time in workloads that were
expected to be constantly high
throughput

25 | ©2023 SNIA. All Rights Reserved.

How device settings can affect I/O pattern

Maximum Data Transfer Size – MDTS
 Controller Setting
 Sets maximum transfer size drive will accept

 /sys/block/nvmeXnY/queue/max_hw_sectors_kb (Value in KiB)
 Can be adjusted down

 “echo <value_kb> > /sys/block/nvmeXnY/queue/max_sectors_kb”
 max_sectors_kb – Working limit on OS

Namespace Optimal Write Size – NOWS
 Namespace setting – Cannot be adjust in OS
 Hint for applications & file systems – not enforced by drive

26 | ©2023 Micron Technology, Inc. All Rights Reserved.

Unet3D
I/O Blocksize Pattern 16 Accelerators – XFS Filesystem

MDTS: 4MiB / NOWS: 4KiB MDTS: 4MiB / NOWS: 256KiB MDTS: 512KiB / NOWS: 256KiB

27 | ©2023 Micron Technology, Inc. All Rights Reserved.

Future Improvements
27

 Trace of files accessed
 Trace application processes
Analysis Improvements

28 | ©2023 Micron Technology, Inc. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

29 | ©2023 Micron Technology, Inc. All Rights Reserved.

Reference Links

 libbpf - https://github.com/libbpf/libbpf
 libbpf-bootstrap - https://github.com/libbpf/libbpf-bootstrap
BPF Performance Tools (Brendan Gregg) -

https://www.brendangregg.com/bpf-performance-tools-book.html
MLPerf™ Storage - https://mlcommons.org/en/groups/research-storage/

https://github.com/libbpf/libbpf
https://github.com/libbpf/libbpf-bootstrap
https://www.brendangregg.com/bpf-performance-tools-book.html
https://mlcommons.org/en/groups/research-storage/

	Understanding Applications Through NVMe Driver Tracing Using BPF
	Agenda
	BPF and the NVMe Driver
	BPF Overview
	Methods of Tracing Kernel/Drivers
	Need
	Linux Storage Stack
	NVMeTrace
	Why Libbpf?
	Code Flow
	Request/Command Structure
	nvme_setup_discard Handler
	nvme_submit_cmd Handler
	nvme_complete_rq Handler
	Example Output
	BPF Helpers
	BPF CO-RE
	Application Analysis
	MLPerf™
	MLPerf™ Storage Benchmark
	Unet3D�I/O throughput versus time
	Unet3D�Queue depth versus time
	Unet3D�Percent of I/Os by queue depth for 1 accelerator
	Unet3D�Percent of I/Os by queue depth for 15 accelerator
	How device settings can affect I/O pattern
	Unet3D�I/O Blocksize Pattern 16 Accelerators – XFS Filesystem
	Future Improvements
	Please take a moment to rate this session.
	Reference Links

