
Placement Layouts in NFS

Adam C. Emerson <aemerson@cohortfs.com>
Marcus Watts <mdw@cohortfs.com>

August 29, 2014

August 29, 2014 Placement Layouts in NFS

As you know. . .

pNFS layouts were introduced in RFC 5661 as part of NFSv4.1
to provide access to scale-out storage. That is, clusters can

▶ Store data on multiple machines
▶ Provide direct access to data
▶ Synchronize updates to metadata

Provides faster throughput, decreased load on a single server.

August 29, 2014 Placement Layouts in NFS

As you know. . .
The layout is a recallable resource associated with a file that
gives you permnission to access the data store directly.

▶ Recall allows the clients to be informed and clean up
gracefully before access becomes available

▶ Refusing to grant a layout or recalling to manage
conflicting access

▶ Client uses LAYOUTCOMMIT to update file metadata after
modifying data

▶ LAYOUTRETURN returns all or part of layout to the server.
▶ Server side fencing cuts off errant clients from accessing

data they shouldn’t.

August 29, 2014 Placement Layouts in NFS

As you know. . .

In addition to arranging permission to access data, pNFS
layouts also specify the protocol to access it, with NFS itself,
T10 OSD protocol, and SCSI all being supported by current
standards.
It also has to tell the client wanting data where to find it.

August 29, 2014 Placement Layouts in NFS

Where to find it. . .

▶ The Block/Volume layout of RFC 5663 associates file data
with lists of extents in a virtual volume assembled of block
devices.

▶ The Object-based layout of RFC 5664 associates file data
with objects in nested striping or mirrored configurations
over multiple storage devices.

August 29, 2014 Placement Layouts in NFS

Where to find it?

▶ The NFSv4.1 Files Layout of RFC 5661 only allows simple
(non-nested) striping across mirrored data servers.

▶ The Flexible Files draft by Halevy and Haynes has
essentiall the same placement as NFSv4.1 files, though
disambiguates between multiple interfaces and mirroring.

Each of these designs presumes a locator service that centrally
records and maintains information on where to find the data for
various objects.

August 29, 2014 Placement Layouts in NFS

Where to find it!
These are a poor match for many clustering strategies:

▶ Most famously, Ceph uses the CRUSH, a derivative of
Honicky and Miller’s RUSH family of algorithms, for object
placement.

▶ The OpenStack Swift storage system uses a distributed
hash table.

▶ Some commercial clustered storage systems use similar
algorithmic strategies.

Several modern systems do away with the locator service and
thereby eliminate a point of contention, replacing it with a
globally known function.

August 29, 2014 Placement Layouts in NFS

Layout for each strategy?

We could take the obvious approach:
▶ Write and deploy a CRUSH layout module for every

platform
▶ Once we have pathless objects, write and deploy a Swift

layout module on every platform
▶ And one for every other clustered storage system. . .

August 29, 2014 Placement Layouts in NFS

Layout for each strategy!

And now our generic, commodity network file access protocol
has a specialized module for every single clustered backing
store.

*** You have missed the point entirely ***

August 29, 2014 Placement Layouts in NFS

Another reason not to do that
There is no ideal placement strategy for all situations

▶ CRUSH works well on uniform, random access patterns,
badly on sequential reads or mixed sequential/random
workloads.

▶ SCADDAR works well on continuous media.
▶ Pseudo-random traversal strategies like CRUSH and

RUSHT have higher time complexity than distributed hash
tables but allow one to account for the structure of the
cluster.

Some filesystems might use more than one algorithm, and
research on placement algorithms is still ongoing.

August 29, 2014 Placement Layouts in NFS

Concept
Consider the web. How do we describe handle runtime
customization of a client?
We send it code.

▶ The cluster uses one or more globally known functions?
▶ Send them to the client
▶ Probably just once, give paramenters to supply to function

in layout
▶ All the other parts of pNFS work as previously described

August 29, 2014 Placement Layouts in NFS

Prototype
We are developing a proof of concept implementation:

▶ Back-end is a heavily modified Ceph cluster
▶ Server interface is a Ganesha FSAL
▶ Device contains vector of functions, indexed list of all OSDs
▶ Layout contains index of function to use, parameters
▶ Functions are sent as C code
▶ Compiled by a helper in user space
▶ Linked as a kernel module, called by Kernel layout driver

August 29, 2014 Placement Layouts in NFS

Wait, what?

C has obvious disadvantages, of course, it’s untrusted, unsafe
code linked right into the kernel, but:

▶ You can actually link it into the kernel, no upcalls or
interpreter

▶ Idea of what performance can be like for testing
▶ It’s easy to put together and run around with

There are alternatives.

August 29, 2014 Placement Layouts in NFS

Alternatives, you say?
Domain specific language

▶ Portable
▶ Easy to restrict
▶ Could have primitives for hashes, number theoretic

operations to take advantage of CPU features
▶ Opportunities for high level optimization
▶ Year long research project to design one
▶ Still have to compile it
▶ High level optimizations are expensive, better to do them

centrally, but that degenerates to

August 29, 2014 Placement Layouts in NFS

Alternatives, I say
A virtual machine/bytecode

▶ Re-use Linux kernel virtual machine? (NFTables/BPF)
▶ Not portable
▶ Domain specific for the wrong domain

▶ Supervised runtime
▶ Well understood, commonly used
▶ Can use existing projects
▶ Can be AOT or JIT compiled for better speed

Burn onto FPGA
▶ Likely not effective if functions change often
▶ For relatively stable functions on commonly used

filesystems, it could be lots of fun

August 29, 2014 Placement Layouts in NFS

Security

Metadata servers can be put in various trust categories.
Trusted servers (those under the same administrative control as
the client) could have their placement functions run essentially
unsupervised or even linked into the kernel for maximum
performance.
Functions from untrusted sources could be run under some
combination of sandboxing and static analysis at some possible
performance penalty.

August 29, 2014 Placement Layouts in NFS

Layout to Function

Rather than shoving everything in the world into on
da_addr_body opaque, we expect a returned layout to give
reference a single deviceid4, as well as providing information
like block size, placement seed, and the like. The deviceid4
would return a single function.

August 29, 2014 Placement Layouts in NFS

Function to Devices
The prototype method of including the entire OSD map does
not scale to large clusters. Instead the function should generate
deviceid4s. If the cluster natively identifies OSDs with
integers (Ceph uses 31-bit integers, for example) this can easily
be accomplished using whatever function the cluster would
employ internally and prepending a prefix to fill out the rest of
the deviceid4.
Functions should generate sets of deviceid4s, marked as
suitable for read, write, erasure coding, and so forth. These
should be OSDs that mirror each other.

August 29, 2014 Placement Layouts in NFS

Deviceids to Devices

Each deviceid4 should return a multipath_list, giving relevant
interfaces of the device to aid in trunking if supported by the
chosen protocol.

August 29, 2014 Placement Layouts in NFS

Protocol? What protocol?

The layout concept was flawed by conflating placement and
data access protocol. Ideally, the means for specifying striping
patterns or the like would be specified, and data-access
protocols could use whatever placement method made sense.
It is too late to change that in general, but placement layouts
could benefit from a LAYOUTGETPLUS call which would allow
the client to send a list of supported transport protocols so that
the server could match the layout to its capabilities.

August 29, 2014 Placement Layouts in NFS

Example

For Ceph, we could have a system where each layout contain:
▶ deviceid4 specifying the function to be executed
▶ Inode number
▶ Block size
▶ Opaque (in this case number of placement groups in the

system)

August 29, 2014 Placement Layouts in NFS

Example
The placement function in the layout would take the opaque,
the inode number, and a block number as parameters and be a
composition of:

▶ Wrapper, form object name of the form “inode.block”

▶ Using number of placement groups, find placement group
for object

▶ Using placement group, execute CRUSH rules compiled to
formalism

▶ Yield list of deviceid4s
Each yielded deviceid4 would then specify an OSD.

August 29, 2014 Placement Layouts in NFS

Placement Layouts

In addition to locating data blocks, a placement layout like
mechanism would also be able to expand the Metadata Layouts
we have been developing, allowing the native mechanism of a
cluster for scattering filenames between directories to be
exported.

August 29, 2014 Placement Layouts in NFS

Other Possibilities

Extending the layout mechanism with dynamically propagated
code has other applications besides placement. Systems
supporting client-side erasure coding (as the Object layout
does) would be more robust and capable if new erasure coding
methods could be added, and clients without native support for
them could be sent code for an implementation.

August 29, 2014 Placement Layouts in NFS

In Summary

▶ Propagating functions seems the best way for NFS to
support the clustered filesystems being developed well.

▶ They might be used to support other things
▶ They can be made fast
▶ They can be made secure
▶ They shall be made the future

August 29, 2014 Placement Layouts in NFS

