

## Delivering a Standards Based SDS Framework with an Open Stack SDS Controller Implementation

Anjaneya "Reddy" Chagam Principal Engineer Intel Corporation



- Data Explosion & Storage Pain Points
- Software Defined Storage (SDS) vision
- SDS Controller Use Cases
- SDS gaps and response
- Summary





#### Data Explosion & Storage Pain Points

- Software Defined Storage (SDS) vision
- SDS Controller Use Cases
- SDS gaps and response
- Summary



#### **Data Explosion:**

#### From 2013 to 2020, the digital universe will grow by a factor of 10, from 4.4 ZB to 44 ZB

#### It more than doubles every two years.



Data needs are growing at a rate unsustainable with today's infrastructure and labor costs

Source: IDC – The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things - April 2014



### **Storage Pain Points**

#### Storage Silos (Traditional)

- Application mapped to specific appliance
- Storage resources optimized to run specific workload
- Isolated storage resources
   Application Servers



#### **Challenges**

- Cost of managing diverse storage solutions
  - Data Growth
  - Maintenance, Operations & Support
  - Infrastructure
- Vendor lock-in
  - Limited scalability
  - Flexibility to innovate
- Need for massively shared data
  - But not yet cloud ready

Traditional storage management is too complex and inefficient



2014 Storage Developer Conference. © Intel Corporation. All Rights Reserved.



#### Data Explosion & Storage Pain Points

#### Software Defined Storage (SDS) vision

- SDS Controller Use Cases
- SDS gaps and response

#### Summary



## Software Defined Infrastructure (SDI)



SD @

2014 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

## **SDS – A Key Component of SDI**

Dynamic, policy-driven storage resource management



**Abstracting** Software from Hardware, providing flexibility & scalability

<u>Aggregating</u> diverse provider solutions, increasing flexibility and drive down costs

**Provisioning** resources dynamically (pay-asyou-grow) increasing efficiency

<u>Orchestrating</u> application access to diverse storage systems through Service Level Agreements (SLAs), increasing flexibility and handle data complexity

SDS is a framework that delivers a scalable, cost-effective solution to serve the needs of tomorrow's Data Center



#### **SDS Architecture**



SDS : Consolidated Management of Scale-Out and Scale-Up Storage and plug into SDI



2014 Storage Developer Conference. © Intel Corporation. All Rights Reserved.



#### Data Explosion & Storage Pain Points

- Software Defined Storage (SDS) vision
- SDS Controller Use Cases
- SDS gaps and responseSummary



#### SDS Controller Use Case: Application Assignment (Logical Pools)





2014 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

## SDS Controller Use Case: Application Assignment (SLOs)

Example: Application provides SLO attributes (performance)





#### SDS Controller Use Case: Application Assignment (SLOs & Policies)

Example: Application provides SLO attributes (Throughput, noisy neighbor policy)





#### SDS Controller Use Case: Storage Overflow

Example: Application provides SLO attributes (Performance but storage is full)







- Data Explosion & Storage Pain Points
- Software Defined Storage (SDS) vision
- SDS Controller Use Cases
- SDS gaps and response

#### Summary



#### **SDS Gaps: Clear Standards**



Industry wide focus needed to develop standards by either enhancing or developing new standards (e.g., SNIA, OASIS, DMTF)



#### **SDS Gaps: Standards Current State**

| Applications                                                      |  | Standard       | Gap                                                                                                                              |
|-------------------------------------------------------------------|--|----------------|----------------------------------------------------------------------------------------------------------------------------------|
| Orchestrator<br>Northbound API<br>SDS Controller<br>Southbound AP |  | OASIS<br>TOSCA | Applications provide storage requirements using SLOs                                                                             |
|                                                                   |  | IETF           | Network focus - storage<br>requirements (e.g. policies) not<br>comprehended                                                      |
| Storage System<br>(Capacity)<br>Node Node Node Arrays             |  | CDMI           | Very good capability discovery<br>for objects – need block/file<br>extensions and granular<br>capabilities (e.g. erasure codes). |
|                                                                   |  | SMI-S          | Appliance focus - requires<br>changes for distributed storage<br>use                                                             |



2014 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

# Standards: Application to Orchestration & Controller (SLOs)

#### Wikipedia Definitions

- Service Level Agreement (SLA) A service-level agreement (SLA) is a part of a service contract where a service is
  formally defined. In practice, the term SLA is sometimes used to refer to the contracted delivery time (of the service
  or performance). SLA will typically have a technical definition in terms of <u>mean time between failures</u> (MTBF), <u>mean
  time to repair</u> or <u>mean time to recovery</u> (MTTR)
- Service Level Objective (SLO) A service level objective (SLO) is a key element of a service level agreement (SLA) between a service provider and a customer. SLOs are agreed as a means of measuring the performance of the Service Provider and are outlined as a way of avoiding disputes between the two parties based on misunderstanding.

| Dimension        | SLOs (Examples)                                                                 | Gold              | Silver            | Bronze         |
|------------------|---------------------------------------------------------------------------------|-------------------|-------------------|----------------|
| Performance      | Latency (ms), Throughput (MB/s or IOPS)                                         | <10ms             | <20ms             | <30ms          |
| Workload Profile | Sequential v/s random, Read v/s Write, Access pattern<br>(burst, avg, min, max) | 50:50<br>(R:W)    | 80:20<br>(R:W)    | 90:10<br>(R:W) |
| Cost             | \$/GB, \$/IOPS                                                                  | \$2/GB            | \$1/GB            | \$.5/GB        |
| Capacity         | GB or TB                                                                        | Max 2TB           | Max 10TB          | Max 2PB        |
| Consistency      | Eventual, Strong, Read after write                                              | Strong            | Eventual          | Eventual       |
| Durability       | Replication, Geo protection                                                     | Local             | Local             | Geo            |
| Availability     | Up time (e.g., 99.999)                                                          | 99.99             | 99.9999           | 99.99999       |
| Compliance       | HIPAA, ISO etc.                                                                 | HIPAA             | HIPAA             | HIPAA          |
| Protection       | Encryption, Secure Erase                                                        | Client,<br>Server | Client,<br>Server | Server         |



2014 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

## Standards: Application to Orchestration & Controller (TOSCA, CDMI, ?)

#### Service Centric Service Templates



Storage Centric

Need standard way of expressing application requirements using SLOs – work with OASIS, SNIA, IETF to create SLO standards

19

#### **Standards: Storage Resource Management**

#### **Cisco OpFlex (IETF informational RFC) Network Policy** Observer Logical Model Group A Group B EP 1 EP 4 Endpoint Policy EP 2 EP 5 Registry Repository EP 3 TI EP 6 Root Statistics Events Faults **EP Policy** Policy Endpoint Endpoint Policy Declaration Request Update Resolution Update mplici Deplo Rende (Subset) Concrete State Logical Model Report Model Policy Network Hardware Element Ports. VLANs, and Interfaces

Source: http://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html

#### SNIA Resource Management Model Storage Policy



Source: 2011 SNIA Tutorial (Interoperable Cloud Storage with the CDMI Standard)

One policy framework is desirable in a data center for all resources (compute, network, storage). Need to incorporate storage requirements and policies in emerging standard discussions in IETF.



#### **Standards: SDS Controller to Storage System**



SDS Controller enables granular monitoring and QoS enforcement of storage data types (virtual volume, shares, containers) – need standards to address these gaps.



#### SDS Gaps: Open SDS Controller



Open, federated "control plane" with pluggable architecture is needed for ecosystem innovation



2014 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

#### **SDS Requirements**





2014 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

#### **SDS Functional Partitioning**

Legend



2014 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

#### **SDS Controller Reference Architecture**



SD (4

## **Open Source SDS Controller - Prototype**



Develop key requirements by working with ecosystem and finalize open source enabling plans in 2H'14 1 SDS controller discovers storage systems and capabilities (e.g., perf, capacity, tiers, etc.)

2 Admin composes storage pools (e.g., gold, silver, bronze)

3 Application requests storage service using SLOs.

Controller allocates storage volume from pool that can best service the request.

4 Storage gets assigned to Nova or App in VM.

Controller works with compute, network to set QoS.



#### **SDS Gaps: Data Services**



Data Services framework definition and standards needed for ecosystem innovation

SD @

2014 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

## SDS Gaps: Data Services (An app store for storage)



- Data Services can be deployed as virtual services or purpose built ٠ appliances
- SDS controller dynamically composes an end to end storage ٠ service by intelligently chaining data services and storage systems to meet application requirements. Can be extended to Network functions too (e.g. WAN acceleration for geo replication).
- 2. Application provides requirements using SLAs
- 3. Orchestrator provides SLOs to SDS controller
- 4. SDS controller composes storage resources and passes information to application
- 5. Application uses end point information for data path communication

Data Services concept is similar to Service Chaining in Network Function Virtualization



- Data Explosion & Storage Pain Points
- Software Defined Storage (SDS) vision
- SDS Controller Use Cases
- SDS gaps and response
- Summary



#### Summary

- Software Defined Storage is needed to address tomorrow's challenges
  - Data needs are growing at a rate unsustainable with today's infrastructure and labor costs
  - Traditional storage silos drives management complexity and inefficient
- SDS is a framework aimed at serving the needs of emerging storage requirements. But there are gaps -
  - Industry wide focus is needed to create standards for application and storage system interoperability
  - Open, federated SDS controller that provisions, monitors, provides SLA adherence is needed
  - Data Services framework definition and standards needed for ecosystem innovation
- SNIA has critical role in creating SDS framework and defining SDS storage standards by working with other standard bodies



## **Call to Action**

- Contribute to Opensource SDS controller development
- Engage with SNIA to address SDS standards gaps
  - Develop cohesive Software Defined Storage Model with framework and standards in SNIA
- Pilot SDS solutions in 1H'15 (based on open source controller)
- Innovate storage offerings with Open source framework and Data Services



## **Backup Slides**



2014 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

#### What is TOSCA?

14

**OASIS N** Topology and Orchestration Specification for Cloud Applications



## **Using TOSCA to model applications**



#### **Using TOSCA for SLOs?**

#### **Requirements & Capabilities**



9

Source: https://wiki.openstack.org/w/images/a/a1/TOSCA\_in\_Heat\_-\_20130415.pdf



#### SDS Controller Use Case: Application Assignment (Complex SLOs)

Example: Application provides SLO attributes (performance, client caching)





2014 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

#### SDS Controller Use Case: Application Assignment (Complex SLOs)

**Example: Application provides SLO attributes (ephemeral)** 





#### SDS Controller Use Case: Application Assignment (Complex SLOs)

Example: Application provides SLO attributes (ephemeral, local protection)





#### SDS Controller Use Case: Application Assignment (SLOs & Policies)

Example: Application provides SLO attributes (IOPS, noisy neighbor policy)



