SDC.1

STORAGE DEVELOPER CONFERENCE
SNIA = SANTA CLARA, 2014

Data De-duplication for Distributed
Segmented Parallel FS

Boris Zuckerman & Oskar Batuner

Hewlett-Packard Co.

Objectives

1 Expose fundamentals of highly distributed
segmented parallel file system architecture

7 Review the challenges and goals of
Implementing de-duplication

1 Show key points of the design:
Role of ES in de-duplication
Segmented Indexing and Index Segment Servers
Data Chunk Files, Manifests, Index Files
Representative Keys, Key Groups

0 Questions

s D ‘14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

c a 4w &
S D 14 2014 Storage Developer Conference.©HewIett-Packardiﬂl Rights'leser\';li. - o -
‘ | |

Scalable segmented FS architecture

~ Server$3 SeverS2

Segment 2

Segment 4 Segment 3

\/
“.w'
~

Application Node Application Nodes

Splits physical and logical space
Into segments

Assigns control over storage
segments to segment servers

Segment servers are entirely
responsible for file (inode) and
block allocation within the
boundaries of the individual
segments

segment servers coordinate
caches and activities associated
with objects they maintain

Files and directories are
distributed through the sets of
segments

s D ' 14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

De-duplication Design: Goals

a Efficiency - design and implementation should be
efficient enough to avoid degrading throughput of
sequential write and read operations

Scalability — the proposed design should be as scalable
as the overall file system. In other words, adding more
servers and segments to the de-duplication space
should allow it to handle proportionally larger cumulative
load

Manageability — set of tools and utilities should be
provided to de-duplicate, restore, copy, compare,
replicate de-duplicated data, etc.

s D ‘14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

De-duplication Design Goals: Efficiency

0 Avoid additional data hops

0 ES determines location of data and reads it directly from
corresponding DS or even directly from LUNSs

a3 When writing, ES should send data directly to the DS for
corresponding chunk store files (Dchunk file)

a3 Provide pre-allocation of contiguous spaces for data
streams

s D ‘14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

De-duplication Design Goals: Scalability

Distribute Dchunk files through Ibrix segments

Multiple Dchunk files should accept new data
at the same time

Distribute indexes through multiple servers,
S0 each server can support and cache only
assigned part of the overall index tree

s D ‘14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

Segmented Indexing: DDup Index
Servers (DD) and Index Segments

Index Server DD3 sgpiit Index into index segments Index Server DD2

' EE E : =Assign index segment to different DDs
- »Distribute Index files through segments

Index Segment 6 Index Segment 1

Index Segment 2

Index Segment 4 Npgex'Segments

\ /

erver DD1 4 [====

it

IP, IB network

D

/ | oooo

/
ES ES

8

D 14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

Components: DDup Servers (DD)

Maintain assigned parts of overall Index (one or more
Index segments)

In-core representation of the index segments
On-disk representation of the index segments
Releases unreferenced blocks of DChunk files

Index segments may be reassigned from one DD to
another any time as part of failover or for load
balancing

s D ‘14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

DDUP Dataflow — Write request

NFS Client Index Severs (DDs)

e | e

NFS3_WRITE alculate
- SHAs mooo

IDE_READ

DDP_MAP

Data Severs (DSs)

IDE_WRITE

{——
WEEET —1 ====
—

| =

Index files Index files
DDUP Inode

Attributes & Manifest file Dchunk files

Dchunk files

i
s D ' 14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

Segmented Indexing: Index composition

L 20 byte (160 bit) SHA-1 key is calculated by ES for any Addressable
Data Block (ADB ~ 4K, 8K, etc.)

O This key is the key into Ibrix DDUP Index space

(J DDUP Index space is divided into DDUP Index Segments

O These Index Segments can be handled by multiple Ibrix DD servers
O DDUP Index Segment Number (ISN) is a part of SHA key

 Association between segments and servers is known to every Ibrix
ES; though it can change over time, is reasonably stable

s D ‘ 14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

Segmented Indexing: Index composition

SHA-1 key - 160 bits

1 1
1 1
ISN PSI | & ! Sl
T
l]
Segment# Primary seg Secondary
7to9 bits index 25 - 30 index 121 - 128
128to 512 bits bits
segments

O The composition of ISN and PSI should be sufficient to cover the
addressable data blocks (ADB) in the DDUP space.

O Example: if DDUP space is 512 TB and the size of ADB is 4K, the number
of the addressable element is 249 / 2712 = 2737. This can be divided into
256 (278) ISNs and 512M (2729) PSils.

O KPG — Key Placement Grouping of PSls: all entries with the same PSI keys
with zeroed KPG bits are placed into one storage group.

s D ‘ 14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

point to

DDup Servers: Index Files

 Direct Access files covering the space of the
segment index

1 Part of PSI is used as a record number

1 Use key grouping to achieve better space utilization

 Spillover into the next level segment index file when
run out of space in the group

s D ‘14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

DDup Servers: Index Files — KPG & spillover

ISN PSI

KPG

i 1
| 3 No space?
—— spillover!

s D ‘ 14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

DDup Servers: Representative Indexing

1 Use representative indexing to reduce in-core
memory consumption

d Define ‘significant’ or representative index
segments

 Only representative segments need to be assigned
to Index Servers

 ES aggregates multiple keys into one DDP_MAP
request starting with a representative key

DD matches set of keys based on the value of the
representative key; other keys are treated as
associated

1 DD keeps track of all data locations for all with
representative and associated keys

S D ‘14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

DDup Servers: Representative Indexing

ESs

Index Segment 6 Index Segment 1

- INDEX Index Segment 2

Index Segment 4 |ndex Segment 3

ndex Server DD1

IP, IB network
o ek A

16 -
a)
S D ‘14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved. A

-

ES

DDup Servers: Representative Indexing

DDB_MAP request includes one Representatives and several Associated
Indexes and their Proposed locations

N Representativ Proposed Associated Proposed Associated Proposed
e Index Location Index 1 Location Index 2 Location
Exists/
Representative N Does not

Exist On-disk Index Segment

Index In-core Index 8

_—) I

Segment DB _

RfCnt RI1 L1 Al L2 A2 L3 A3 L4

RfCnt RI2 L5 A6 L6 A7 L7 A2 L8

RfCnt RI3 L9 A8 L10 A9 L11 Al10 L12

RfCnt R4 L13 A6 L14 All L15 Al12 L16

Key Placement Group
|

s D ‘ 14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

Write performance implications

We start writing into Dchunk files concurrently with
sending DDB_MAP request

DD should respond promptly if key is not found and
writes should be committed

When ES commits write it sends the DDB_ COMMIT
message to DD and data becomes available to other nodes

If key exists DD fetches the record from the Index file,
bumps up the RefCount and replies with the collation of
the representative and associated key; in this case writes
to Dchunk files are aborted

Most of the actions above are not on 1O path and do not
slow down writing

s D ‘14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

Dchunks & contiguous space allocation

Multiple Dchunk files are active at the same time

ES pre-allocates space in Dchunk files and maintains affinity
between incoming data streams and chunks

Various block distribution policies can be applied. For
example we can implement striping this way

DD servers record the key to location mappings and
maintain reference counts

Special allocation policies may be added to place Dchunk
files on designated set of segments

Dchunk files can be cloned

Dchunk files can be compressed and encrypted

s D ‘14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

DDup inodes: manifests & properties

Various types of de-duplicated files are recognized by
lbrix FS and various formats of manifests can be
supported

Special allocation policies are used to place de-
duplicated inodes on designated set of segments

Regular file attributes are maintained on the inode
level

s D ‘14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

Opportunistic De-duplication

Goal: remove the de-duplication process itself from the
write performance path and prevent potentially slower
mechanism of index lookup to negatively affect efficiency
of writes.

1 DD may respond with the instruction to write some of
the data chunks as not de-duplicated
1 ES may decide also not to de-duplicate some or all
the chunks
v'heuristic analyses of responsiveness of DD
requests and responsiveness of Dchunk DS
v'ratio of newly seen to already know data.

S D ‘14 2014 Storage Developer Conference. © Hewlett-Packard. All Rights Reserved.

c a 4w &
S D 14 2014 Storage Developer Conference.©HewIett-Packardiﬂl Rights'leser\';li. - o -
‘ | |

	Data De-duplication for Distributed Segmented Parallel FS
	Objectives
	Slide Number 3
	Scalable segmented FS architecture
	De-duplication Design: Goals
	De-duplication Design Goals: Efficiency
	De-duplication Design Goals: Scalability
	Segmented Indexing: DDup Index Servers (DD) and Index Segments
	Components: DDup Servers (DD)
	DDUP Dataflow – Write request
	Segmented Indexing: Index composition
	Segmented Indexing: Index composition
	DDup Servers: Index Files
	DDup Servers: Index Files – KPG & spillover
	DDup Servers: Representative Indexing
	DDup Servers: Representative Indexing
	DDup Servers: Representative Indexing
	Write performance implications
	Dchunks & contiguous space allocation
	DDup inodes: manifests & properties
	Opportunistic De-duplication
	Slide Number 22

