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1 Overview 
DNA is emerging as a promising media type for storing data that has the potential to address 
fundamental challenges in data storage around retention, longevity, durability, power 
consumption, and cooling requirements. Alongside such promise, multiple challenges exist to 
adequately integrate this radically different type of media.  

In modern media storage, data is generally created in binary form and laid out in a manner that is 
conducive to the substrate, for example magnetic disk, magnetic tape, or NAND flash.  Each of 
the aforementioned media types have been wrapped with a layer of intelligence to ensure that 
issues encountered in one part of the media can be confined or otherwise replaced with 
information contained in another to ensure data resiliency.  

The process of encoding and decoding data occurs inside of a coder-decoder, also known as a 
CODEC.  The CODEC encapsulates the functions of encoding and decoding, and in so doing, 
data that is to be written to the media is encoded with pieces of information that allow errors to be 
detected and potentially corrected.  This process often involves cyclic redundancy checks (CRC), 
inclusion of parity bits, and inclusion of redundant chunks of the information (for instance, through 
erasure coding or other mechanisms).  Following encoding, the encoded material is written to the 
media after any media-specific or format-specific processing that must occur. 

On the reverse side, requests to retrieve data are often handled by a controller that is aware of 
the way data has been written to the media and how the data has been encoded prior to writing 
to the media.  Essentially, reading data requires a process that reverses the process found in the 
writing process.  As data is retrieved from the media, it is decoded, returning it to the original 
binary form, assuming the data passes the redundancy, error, and parity checks during the 
decoding process.  Should the retrieval of that data fail due to the error detection, the controller 
is able to (1)  localize the errors using the redundancy,  (2) infer the error to recover the original 
data using the redundancy, (3) determine consensus on what the contents should be by 
examining replica strands, or in the worst case, and (4) alert the system or user retrieving the data 
of an unrecoverable error. 

With DNA’s primary use case, as of today, of providing long-term archival storage spanning 
decades, centuries, and beyond, the CODEC is of paramount importance to ensure data durability 
and availability.   

In order to store data into DNA (See Figure 1 for the flow for data storage in DNA), we need to 
make small binary chunks of a source file which is then converted into DNA oligos (quaternary 
format) using an encoding such that errors can be corrected. These DNA oligos are synthesized 
and stored. When we need the data, these DNA oligos are subject to PCR and then clustering is 
done and noisy reads are corrected for errors and then finally converted into actual data after 
decoding. Usually, a 1 GB file gives rise to billions of DNA oligos after encoding so reconstruction 
and decoding plays an important role for the CODEC. The reader is referred to [10] for a layered 



v1.0   5 

model of DNA storage as it fits into the Open System Interconnection (OSI) model of a modern 
data storage medium and storage interface.  

A recent monograph [18] presents a probabilistic channel model specifically designed to reflect 
the distinct features of DNA-based data storage systems. This model addresses three key 
characteristics: (1) information is encoded into a large collection of short DNA strands stored in a 
disordered manner; (2) these strands are prone to errors arising from synthesis, sequencing, and 
storage; and (3) retrieval of information is performed by randomly sampling strands from the DNA 
pool. The work also establishes theoretical bounds on the limits of storing and retrieving data 
within such systems. 

The analysis spans several channel models, such as shuffling and noisy shuffling-sampling 
channels, to evaluate their influence on achievable storage capacity. Furthermore, it investigates 
the trade-offs between data density and sequencing complexity and examines the effects of 
strand degradation and sequence length variability. This in-depth exploration offers critical 
insights for the development and enhancement of DNA data storage technologies, grounded in 
principles of information theory. 

In Section 2, we describe the state of the art of current CODECs. Section 3 deals with the analysis 
of requirements such as scalability, performance, compatibility etc. for CODECs and summarizes 
the basic criteria for DNA codecs.  

 
    Figure 1: A flow of the DNA Storage Process 

2 State of the Art of DNA Codecs 

2.1 Types of Codes 

There are a number of general information coding fundamentals applied in DNA codes; the 
following sections outline some of them. 

2.1.1 Linear Codes 
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Codes are useful for error detection and correction for most of the data storage and 
communication systems. These are of two kinds: linear, where XOR bitwise sum of codewords 
will lead to another codeword from the set, and nonlinear, where this may not be the case. Often, 
linear codes have efficient encoding and decoding mechanisms. Thus, linear codes are the most 
extensively studied type of redundant codes, with several optimal codes known. Consequently, 
they are frequently utilized in DNA-based data storage systems, often serving as the inner or 
outer code in dual-layer coding schemes, and occasionally both. However, no efficient linear 
codes have been discovered that can correct insertions or deletions.  

Now we describe two linear codes used in DNA codecs; for more general background on error 
codes, the reader is referred to the DNA Alliance whitepaper, DNA Data Storage Technology 
Review v1.0. 

2.1.1.1 Hamming Codes 

A class of binary codes with m parity bits, and a block length of n=2^m-1.  Hamming codes 
guarantee a Hamming distance of 3, which is sufficient to detect and correct a single substitution 
error.  With the addition of a single extra parody bit, Hamming codes can be extended to detect 
two bit errors.  When implementing Hamming codes in DNA one must take care to avoid a single 
substitution creating multiple bit errors (e.g. if A->T causes 00->11).  To prevent this, Hamming 
codes may be generalized to a 4-character alphabet or a 1 bit per base encoding may be used. 

In 2019, [13] Microsoft demonstrated the first prototype of an end to end DNA storage system by 
encoding and decoding the “hello” word which took ~21 hours and 1 mg of DNA. The codec used 
in this system was [31, 26] Hamming code over the ring of integers modulo 4 (Z_4) described by 
the 31 x 5 parity check matrix, as shown here.  

  

 

2.1.1.2 Reed Solomon Codes  

Reed-Solomon is an optimal linear block code family defined over Galois Fields where the level 
of redundancy may be tuned for the specific application [47].  RS codes with a block length of n 
and message length of k may locate and correct up to (n-k)/2 errors or (n-k) erasures (at known 
locations).  Its ability to correct erasures at lower cost than substitution errors make RS especially 
suited to be applied across strands, where the loss of a single strand would manifest as an erasure 
rather than a deletion.  RS also requires an alphabet of size q=p^m≥n where p is prime and m a 
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positive integer, meaning that rather than using the alphabet {A,C,G,T} a larger set comprised of 
groupings of bases is typically used. This constraint does have the benefit that short runs of errors 
may only be counted as a single error from the point of view of the decoder. 

In many earlier DNA Codecs, several variations of Reed Solomon Codes were used. For example, 
a Reed Solomon code (255,251) over a field with 256 (since we have 256 ASCII symbols) number 
of elements can be used to correct 2 errors. Figure 2 describes the use of Reed Solomon Code 
in an early [6] version of DNA based data storage as an outer and inner coding.  

 
Figure 2: Use of Reed Solomon Codes in the Grass Model [6] of DNA based Storage  

There is a similar approach to data storage codecs, closely inspired by conventional archival 
storage technologies such as magnetic disk and tape systems (i.e., LTO), where Reed-Solomon 
codes have long been employed in a product code configuration. In these systems, data is 
protected across two dimensions — rows and columns — allowing robust correction of correlated 
errors or burst errors that may affect large sections of the medium. This kind of encoding and 
decoding strategy is the cornerstone of "super data protection" modes, enabling exceptionally low 
user-visible error rates, often on the order of 10⁻¹⁹ [45]. Such reliability standards are critical for 
long-term archival use cases, and their adaptation into DNA storage reflects the convergence of 
biological and electronic error correction paradigms. For more background on this method as 
related to LTO tape, see Annex 1. 

2.1.2 DNA Fountain Codes 
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The DNA Fountain paper by Yaniv Erlich and Dina Zielinski [19] introduces an approach to DNA-
based data storage, focusing on maximizing data density and robustness while also introducing 
error correction. 

DNA Fountain employs fountain codes, specifically the Luby Transform (LT), to manage data 
encoding and dropouts. The Luby Transform is a type of fountain code that enables the creation 
of numerous short messages (droplets) from the data. Each droplet contains a combination of 
data segments selected randomly and combined bitwise, ensuring that any sufficiently large 
subset of droplets can reconstruct the original data. 

The encoding process (See Figure 2.1.2) involves several key steps: 

1. Preprocessing: The input binary file is split into non-overlapping segments. 
2. Luby Transform: Each segment is used to form droplets. The Luby Transform packages data 

into any desired number of droplets by selecting a random subset of segments from the file 
and adding them using a bitwise-XOR operation. Each droplet includes a data payload and a 
short, fixed-length seed that represents the state of the random number generator during 
droplet creation. 

3. Droplet Generation: The Luby Transform iterates over two computational steps: the creation 
of a droplet and its subsequent screening. The algorithm generates droplets until the required 
number of valid oligos is achieved. 

4. Screening: Generated DNA sequences are screened for biochemical constraints, such as 
acceptable GC content and the absence of long homopolymer runs. Only valid sequences are 
retained, ensuring robust synthesis and sequencing. 

To counteract oligo dropouts and sequencing errors, the architecture introduces 5-10% more 
oligos than necessary, providing redundancy. 

 
Figure 2.1.2 DNA Fountain Code Encoding [19] 
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2.1.2.1 Error Correction in DNA Fountain Codes 

DNA Fountain incorporates Reed-Solomon (RS) error correction codes within the droplets. RS 
codes are effective in correcting substitution errors, which are common in DNA sequencing. Each 
droplet consists of a data payload and a seed, with the RS code adding redundancy to the 
payload, enabling error detection and correction. 

However, DNA Fountain's error correction scheme is primarily designed to handle substitution 
errors. While it can correct substitution errors efficiently, it can only detect errors from insertions 
and deletions (indel errors). This limitation means that while the architecture provides robust 
protection against substitution errors, it may not fully address all types of errors encountered in 
DNA storage. 

The decoding process uses a message-passing algorithm to reverse the Luby Transform. The 
decoder collects droplets, uses the seeds to identify the segments, and reconstructs the original 
data. Droplets with substitution errors are identified and discarded using the RS code, ensuring 
only error-free data contributes to the reconstruction. This efficient decoding process requires a 
subset of droplets slightly larger than the original file size, reducing the amount of sequencing 
needed for accurate data retrieval. 

Different codec implementations for fountain codes are given in the literature, some of which focus 
on reducing repair bandwidth and complexity for distributed data storage applications. An 
example of an open source implementation of this is Founsure [1]. On the other hand, in 
broadcast/multicast file delivery and fast data streaming applications, minimizing the coding 
overhead might be of interest. In that case, variations of different low-complexity decoding 
algorithms (e.g., inactivation decoding in RaptorQ [17]) along with suitable code constructions are 
employed to timely deliver data in delay-sensitive applications such as multimedia streaming. 
Moreover, online codes can be adapted for object data storage to efficiently and reliably store 
large data sets (e.g., Amplidata [14]). 

2.2 Overview of some DNA CODECs 

The following sections describe some current DNA Codecs. 

2.2.1 Ying Yang 

Inspired by the rotating coding method of Goldman and the DNA Fountain approach, Ping et al. 
[12] introduced a novel DNA data storage encoding framework known as the Yin-Yang Codec 
(YYC). This method involves three primary phases. Initially, as illustrated in Figure 1.1.1.4 B, byte-
level data is divided into uniform segments. In the next phase, two binary segments are chosen 
at random and fused on a bitwise level—first using the Yang rule and then the Yin rule—to 
produce the corresponding nucleotide, as depicted in Figure 1.1.1.4 A. 

Following the encoding, the resulting DNA sequences undergo a rigorous screening process to 
ensure they meet predefined biochemical criteria: a GC content ranging between 40% and 60%, 
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homopolymers no longer than four bases, and a minimum free energy threshold of −30 kcal/mol 
to avoid secondary structures. If a candidate fails to satisfy these conditions, an alternative binary 
segment is randomly selected, and the process is repeated. 

Notably, this encoding approach offers 1536 distinct ways to map binary sequences into DNA, 
with the potential to reach a theoretical maximum information density of 1.965 bits per nucleotide 
under the imposed constraints. Performance benchmarks were conducted using a custom-built 
software tool named Chamaeleo, where the YYC method was evaluated against established 
schemes, particularly the DNA Fountain strategy. 

To assess the resilience of the YYC framework, both random and systematic errors were 
introduced. Simulations revealed that data recovery remained robust—up to 98% success—when 
sequence loss was kept below 2%. The method was further validated through experimental 
storage of two file types, implemented both synthetically as 200-nucleotide oligos and biologically 
as a 54,240-base pair DNA fragment in yeast cells. These trials indicated a projected physical 
storage capacity of approximately 200 exabytes per gram of DNA, marking a significant leap over 
earlier methodologies. 

A flow diagram of the encoder is given in Figure 1.1.1.4 B. The Ying Yang rules are shown in 
Figure 1.1.1.4 A.  

  Yin Rule      Yang Rule 

 
Figure 1.1.1.4 A: The Yin and Yang Rule [12] 
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Figure 1.1.1.4 B: A flow diagram of Yin Yang Encoder 

Example: Consider two binary segments as a=00110101 and b=11010110.  Assuming the 
predefined virtual nucleotide as ‘A’, we will encode a1=0=[A,T] (using Yang rule) and b1=1=[C,T] 
(using Yin rule) which will give us next nucleotide after A as [A,T] ⋂ [C,T]=T so the overall encoded 
sequence will be ‘AT’. Continuing in this way with all other bits in both the strings the final output 
of the encoder will be ‘ATAGCTGTC’.   

2.2.2 HEDGES 

HEDGES (Hash Encoded, Decoded by Greedy Exhaustive Search) [23] is an infinite constraint 
length convolutional code (Figure 1.2.5.1) with features specific to DNA storage channels. The 
basic plan is based on the classical autokey cipher. The HEDGES encoder consists of two parts, 
the inner codec based on HEDGES and the outer codec based on Reed Solomon (RS) for 
correcting the errors (See Figure 1.2.5.2) 
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Figure 1.2.5.1: Full HEDGE Algorithm Flow [23] 

 

 
Figure 1.2.5.2: An Overview of HEDGES Codec [23]  
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Figure 1.2.5.3: An Example of HEDGES Encoding bit 9 [23]  

The RS correcting code is applied diagonally across multiple strands. In the example, 1 bit of 
input generates 2 bits of output. Hashing each bit value with its strand ID, bit index, and a few 
previous bits positions bad decoding hypotheses, allowing for correction of indels.  

2.2.3 ADS Codec 

The ADS Codec or ACOMA (Adaptive Codec for Organic Molecular Archives) [24] attempts to 
address GC and homopolymer constraints to ensure that the resulting oligos can be synthesized, 
as well as error correction to address errors in synthesis, amplification (through PCR) and 
sequencing (but not storage). 

The codec works on three levels: 

1) Bit packing: Converts bits to nucleotides. 
2) Single oligo layout: Defines the structure of an oligo, i.e., location and size of 

index/address (also referred to as oligo identification) as well as of data/payload. Also 
entails metadata for error correction. 

3) Error correction: Error correction across multiple oligos 

For bit packing (level 0), all oligos of length 17 nucleotides are enumerated and the ones that 
cannot be used due to homopolymer length (fixed, max of 4 for A, T, C and max of 2 for G) are 
discarded. GC content restrictions are handled on the next level. The remaining oligos are 
mapped to bit patterns, resulting in 32 data bits + 1 parity bit. 
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Single oligo layout (level 1) defines how single oligos are structured. As can be seen in the 
figure below, an oligo is a collection of blocks (length 32 bits for data/payload and one parity bit 
to detect errors) as well as metadata (high GC flag - GC content handled on this level rather than 
level 0, erasure flag for level 2 as well as address/ID of the data block in the file). The metadata 
is split into N-1 blocks and placed between the data blocks where N is 33 (the size of the data 
block in bits + parity bit). 

 
Figure 2.1.6 A: ADS Codec [24]  

Error correction (level 2) defines the error correction approach. The figure illustrates error 
correction based on Reed-Solomon erasure coding. Specifically, a number of oligos are grouped 
together and erasure codes for data blocks from different oligos are encoded. Columns consist of 
blocks from different positions (to correct for spatial bias of errors). 

 
Figure 2.1.6 B: ADX Codec Error Correction [24] 

2.2.4 DNA Aeon 
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The DNA Aeon codec [20] consists of an outer foundation code (Raptor fountain code) and an 
inner code resembling an arithmetic code (it is a lossless entropy encoding technique used as a 
basis for many common video standards). See Figure 2.1.7.1 for an overview.  

 
Figure 2.1.7.1 An overview of the DNA Aeon codec: Input data is encoded and packetized using the Raptor fountain 
code, followed by periodic insertion of an 8-bit CRC checksum including a final CRC. The resultant packets are then 
encoded in parallel using the arithmetic code [20]. 

The arithmetic code compresses the data by iteratively partitioning the interval (0,1) into smaller 
subintervals. For a simple example of arithmetic coding, see Figure 2.1.7.2 [20]. 

 
Figure 2.1.7.2 A Simple Example of Arithmetic Code: The encoding of the string “abc” with probabilities a:0.5; b:0.25; 
c:0.25 after encoding the final symbol c is [0.296857,0.3125]. In the first iteration, the interval [0, 1) is divided into 
three subintervals: [0, 0.5) for the symbol a as the first character of the string, [0.5, 0.75) for b, and [0.75, 1) for c. 
Since a is the first symbol in the given example, the current subinterval becomes [0, 0.5) after encoding the first 
symbol. In the next iteration, this subinterval is further subdivided into [0, 0.25), [0.25, 0.375), and [0.375, 0.5). After 
complete encoding we get [0.296857,0.3125]. Source [20] 
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2.2.5 Deep DNA Storage 

By leveraging advanced neural network architectures, deep learning provides significant 
improvements in tasks ranging from base calling and synthesis prediction to sequence 
reconstruction and database searches. Depending on the application, different technologies can 
be applied: Transformers for tasks requiring long-range dependencies and global context 
understanding; Convolutional Neural Networks (CNNs) for capturing local patterns and motifs in 
DNA sequences; Recurrent Neural Networks (RNNs) for modeling sequential dependencies and 
temporal patterns; hybrid models to leverage the strengths of multiple architectures. The main 
applications of deep learning in the DNA data storage field are: 

• Nanopore Base Calling: Deep learning models are used to convert raw signal data from 
nanopore sequencers into nucleotide sequences (base calling) [32]. CNNs and RNNs are 
commonly used for this task. These models can handle the noise and variability inherent 
in nanopore sequencing data. 
 

• Synthesis success factors: Predicting the success of oligonucleotide synthesis based 
on various input parameters, such as sequence composition, secondary structure, and 
chemical properties [7]. They help optimize synthesis protocols by predicting the likelihood 
of synthesis failures or low yields. This leads to more efficient and cost-effective synthesis 
processes. 
 

• Predicting DNA hybridization: Predicting the binding efficiency and stability of DNA 
hybridization, based on the minimum free energy (MFE) of secondary structures that 
indicate potentially undesirable behaviors [33]. Deep learning models can predict melting 
temperatures and hybridization affinities based on sequence data and help design primers 
with optimal binding properties for PCR. 
 

• Database search applications: Content-based similarity search involves finding 
sequences that are similar based on their content rather than their exact sequence [3]. In 
the context of hybridization, the task consists of identifying nucleic acid sequences that 
are likely to hybridize with a given target sequence. Deep learning models, particularly 
hybrid models combining CNNs, RNNs, and Transformers, are well-suited for this task 
because they can capture both local and global patterns in sequences. For instance, 
convolutional layers can detect motifs and short patterns that are important for 
hybridization, while certain sequences might form stable hairpins or loops that affect 
binding. 
 

• Sequence reconstruction: Reconstructing data from single-read sequences can be 
challenging due to errors introduced during sequencing. Deep learning techniques help 
denoise and correct errors in single-read sequences. The use of specific tokens helps the 
model understand the structure and syntax of the sequences, improving its ability to 
correct errors and denoise the data.  A transformer model is trained using a self-
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supervised learning approach, which means the model learns to predict parts of the 
sequence based on other parts, without needing labeled data. [34] [2] 

2.3 Summary 

The following Table summarizes characteristics of the codecs discussed above, plus others in 
the literature, noting the achievable information densities for different DNA data packet formats 

Reference Packet 
Architecture 

Year Data 
Size 

Strand 
Length 

(nt) 

ID 
(bit/nt) 

Coverage Random 
access 

ECC 

Church et 
al.  [25] 

Indices + 
Payload 

2012 0.65MB 159 0.6/0.83 3000x No 1 bit per base to 
resolve DNA 
constraints 

Goldman 
et al. [22] 

Payload 2013 0.63MB 117 0.19/0.29 520X No Base 3 to resolve DNA 
constraints 

Grass et al. 
[6] 

Address + 
indices + 
payload 

2015 0.08MB 158 0.86/1.16 371X No Constrained codes + 
RS 

Bornholt et 
al. [26] 

Payload + index 2016 0.15MB 120 0.57/0.85 40X Yes Repetition 

Erlich & 
Zielinski 

[19] 

Payload + index 
+ RS 

2017 2.11MB 200 1.19/1.57 10.5X No RS + Fountain codes + 
removed bad strands 

Yazdi et al. 
[21] 

Payload + 
Address + 

Index 

2017 0.003MB 1000 1.7/1.74 200X Yes Constrained codes + 
alignment + 

deletion correction 
Blawat et 

al. [27] 
Payload + index 2016 22MB 230 0.89/1.08 160X No RLL + BCH (address) + 

RS + CRC 
Organick et 

al. [28] 
Payload + 

Indices 
2018 200MB 150-154 0.81/1.1 5X (Illumina), 

36X/80X 
(Nanopore) 

Yes RS 

Chandak et 
al. [29] 

Index + Payload 
+ BCH 

2019 1.69MB 150 0.55-0.75 5X No BCH + LDPC 

Wang et al. 
[30] 

Address + 
Payload + CRC 

2019 0.4MB 190 1.56/1.77 12-545X No CRC (single primer) 

Anavy et al. 
[31] 

Payload + RS + 
Barcode + 
Identifier 

2019 6.4MB 194 1.57-1.96 ~10X No RS + Fountain codes 
(composite base - 6) 

Ying-Yang 
[12] 

Payload + RS + 
index 

2022  200 1.965  No RS 

Cao et al. 
[36] 

Adaptive 
coding 

2022 698 KB 162 1.29/1.22 35 Yes Fountain codes + RS 

El-Shaikh 
et al. [37] 

High-scale 
random access 

2022 
 

133, 189 
  

Yes Fountain codes 

Ping et al. 
[38] 

practical and 
robust DNA-
based data 
archiving 

2022 52 KB 200 1.95 
 

Yes yin–yang codec + RS 

Song et al. 
[39] 

Robust data 
storage 

2022 6.8 MB 200 1.3 variable Yes de Bruijn graph-based 

Welzel et 
al. [40] 

DNA-Aeon 2023 91.4 KB 10 
  

Yes Inner AC based, outer 
fountain (Raptor) 

Zan et al. 
[41] 

Modulation 
Encoding and 

Decoding 

2023 
 

120 + 
primers 

1.0 100 Yes pairwise sequence 
alignment 

Gomes et 
al. [42] 

 
2024 38 B 146 1.6 

  
RS + LDPC 
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Reference Packet 
Architecture 

Year Data 
Size 

Strand 
Length 

(nt) 

ID 
(bit/nt) 

Coverage Random 
access 

ECC 

Preuss et 
al. [43] 

shortmer 
combinatorial 

encoding 

2024 
 

220 
 

12 
 

2D RS 

Zhao et al. 
[44] 

Composite 
Hedges 

2024 4 KB 243 1.17 4-8 
 

RS 

Table 2.1: Examples of end-to-end DNA data storage demonstrations.  Bit density is denoted as (encoded data with 
overhead) / (encoded data only).  Coverage denotes the number of times a given sequence was read during 
sequencing and, unless otherwise noted, sequencing was done using Illumina sequencers.  ECC denotes the error 
correction codes applied. 

3 DNA Codec Requirements and Criteria 
This section discusses the requirements for DNA codecs and the criteria to consider about their 
capabilities and performance.  We first briefly summarize the DNA error model and then move to 
requirements and criteria, which ultimately flow from this model. 

3.1 DNA Errors 

DNA synthesis and sequencing introduce errors, so encoding algorithms must include error-
correcting codes. DNA sequences are subject to multiple error modes including substitutions, 
insertions, deletions, and erasures. These errors may be present in isolation or in bursts of any 
combination.  Below is a summary of these error types: 

● Substitutions: Sometimes referred to as Single Nucleotide Variants (SNVs), or Single 
Nucleotide Polymorphisms (SNPs, primarily in genomics literature), substitution errors 
occur when an incorrect/unintended base take the place of a correct/intended base in a 
DNA sequence.  These are analogous to bit errors in digital systems. 

● Insertions: Insertion errors occur when a base has been erroneously inserted into a DNA 
sequence.  There is no analogous common error type in electronic systems. 

● Deletions: Deletion errors occur when a base has been erroneously deleted from a DNA 
sequence.  There is no analogous common error type in electronic systems.    

● Erasures: Erasures occur when a base or sequence cannot be read but it is known to 
exist.  Erasures may occur when sequencing technology reads a base with low 
confidence, encounters an abasic site (a location in the DNA sequence where the base is 
missing, resulting in a site without a nucleotide base), or when an entire sequence is 
absent from a series of reads.  Some sequencing technologies may insert a default rather 
than reporting an erasure. 

3.2 CODEC Scalability  
The scalability of the algorithms used to encode and decode data in DNA storage systems is a 
key factor in the practicality of DNA data storage. Several algorithmic challenges affect the 
scalability of these CODECs. Here we examine the algorithms most commonly used in the DNA 
data storage process (see Figure 1), which may differ from one CODEC to another (see Section 
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2). These include the clustering of similar strand copies containing errors, multi-strand alignment 
and error correction. 

3.2.1 Clustering 

In traditional data storage and transmission channels, CODECs use Hamming distance for error 
correction and detection. For a DNA-based data storage channel, however, Levenshtein distance, 
the minimum number of insertions, deletions and substitutions required to change one sequence 
to another, is the typical metric. This metric is usually applied to regroup strands. Unlike Hamming 
distance (an 𝑂𝑂(𝑛𝑛) algorithm), calculating Levenshtein distance is a dynamic algorithm with time 
complexity 𝑂𝑂(𝑛𝑛1 ⋅ 𝑛𝑛2), where n1 and n2 are the lengths of the DNA molecules being compared 
(Wagner & Fischer, 1974).  If both are the same length, n, then Levenshtein distance is an O(n2) 
algorithm.  If there are k strands to compare, the total complexity depends on the number of 
pairwise comparisons to be made. In the simplest case, where all the strands have approximately 
length n, the complexity is 𝑂𝑂(𝑘𝑘2 ⋅ 𝑛𝑛2). This reflects the quadratic growth in both the number of 
strand comparisons and the time required for each calculation. The algorithm is therefore very 
computationally expensive as k increases. 

Based on the Levenshtein distance, it is possible to cluster all molecule copies together, even if 
there are errors, which ensures that the correct consensus payload strand can be derived from 
each group, which in turn ensures that information can be successfully retrieved and decoded 
from an archive. The more copies there are, the lower the probability of error at the outcome of 
the consensus. 

3.2.2 Multistrand alignment 

In DNA decoding, it is generally assumed that strands belonging to the same original strand, but 
which differ due to indel and substitution errors, must be aligned to improve the chances of finding 
the original strand. There are two main approaches to strand alignment: 

1) Exact algorithms based on a dynamic programming approach involving the building of a 
multi-dimensional matrix. The time complexity of aligning n sequences of length m is 
𝑂𝑂(𝑚𝑚𝑛𝑛). This exponential complexity makes it impractical for large n or m sequences. This 
type of algorithm is therefore mainly used for small datasets. 
 

2) Heuristic algorithms like ClustalW (Chenna, 2003) or MAFFT (Katoh & Toh, 2008) are 
often used to manage the exponential time complexity of exact methods. These provide 
good, but not necessarily optimal, alignments with significantly lower complexity of the 
order of 𝑂𝑂(𝑛𝑛 ⋅ 𝑚𝑚2). Tools like T-Coffee (Korak et al., 2021) improve alignment accuracy by 
incorporating consistency information. However, they come with additional computational 
cost, often with a time complexity of about 𝑂𝑂(𝑛𝑛3 ⋅ 𝑚𝑚2). 

3.2.3 Error correction mechanisms 
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Several error-correcting codes (ECC) can be applied to DNA data storage. Although effective, 
these codes increase both the complexity and computational load of the CODECs, as they 
introduce overhead by adding redundancy to the data, reducing net storage capacity and slowing 
down encoding and decoding operations. At a minimum, a CODEC suitable for data storage in 
DNA should have: 

1) A level of parameterization that allows for the matching of error correction to the error rate 
of the underlying physical system (the composition of synthesis, storage, and sequencing) 

2) Some consideration for indels. (Even if it doesn't handle them elegantly.  it should at least 
recognize reads are the wrong length and discard them, rather than crashing or corrupting 
normally recoverable data.) 

Multiple error correcting codes can be combined to utilize their respective strengths.  In a process 
of concatenation, concatenated codes form a class of error-correcting codes that are derived by 
combining an inner code and an outer code. 

Generally, the inner code operates on a smaller block of data, usually referred to as a "subblock" 
or "inner codeword".  The primary responsibility of the inner code is to correct errors within this 
smaller block.  The inner code generally offers stronger error correction capabilities and is capable 
of handling more significant error rates. 

The outer code operates on a larger block comprising multiple subblocks generated by the inner 
code. This larger block is often referred to as a "superblock" or "outer codeword."  The outer code 
is responsible for correcting residual errors that might not have been corrected by the inner code 
as well as any new errors that occurred during storage. 

The following is a brief complexity comparison of some of the most common ECC schemes: 

• Parity codes work by adding an extra bit to a block of data so that the total number of 1's 
in the block is always even or odd, depending on the type of parity used. 

o Can detect but not correct single bit errors. 
o Does not work well with large blocks of data. 
o For N data bits, linear complexity 𝑂𝑂(𝑁𝑁) for generating and checking. 

• CRC (Cyclic Redundancy Check) codes generate a checksum based on the data being 
transmitted, and appends that checksum to the data. 

o Can detect single- and multi-bit errors but cannot correct errors. 
o Based on an optimization scheme, complexity can be linear for generating and 

checking. 
• Hamming codes work by adding extra parity bits to the data being transmitted. The 

number of parity bits added depends on the number of data bits being transmitted. 
o Can detect 1-bit and 2-bit errors.  Can correct 1-bit errors. 
o Complexity is superlinear 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) for generating and checking.   
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• LDPC (Low Density Parity Check) code works by solving a set of linear equations to 
correct errors in the data. LDPC is considered the state of the art when error rates are 
significantly high. 

o Can detect and correct single- and multi-bit errors. 
o Linear complexity for generating, and superlinear 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) for decoding. 

• Erasure codes work by adding redundant information to a datum that allows the receiver 
to reconstruct the datum even if parts of it are missing. 

o Can detect and correct errors, including the loss of entire data blocks. 
o No closed form for complexity (either for generating or checking). For the 

frequently used Reed-Solomon ECC, parity symbols are calculated using 
polynomial evaluation in a Galois Field (GF). Given an n-symbol codeword and k-
data symbols, where 𝑛𝑛 = 𝑘𝑘 + 2𝑡𝑡 and t is the number of correctable errors, the 
encoding process requires 𝑂𝑂(𝑛𝑛 ⋅ 𝑘𝑘) multiplications and additions in the GF. 
Decoding is more complex as it involves identifying and correcting errors, which 
needs to first compute syndromes, then finds and locates errors based on a locator 
polynomial, with an overall complexity of 𝑂𝑂(𝑛𝑛 ⋅ 𝑡𝑡 + 𝑡𝑡2). Thus, in practical terms, the 
complexity of Reed-Solomon increases with the number of symbols n and the 
number of correctable errors t. 

• Fountain codes work by using a randomized algorithm to generate an infinite stream of 
encoded packets from a single source packet. The receiver can reconstruct the original 
data by collecting enough of these encoded packets. 

o Can detect and correct errors, including the loss of entire data blocks. 
o Generating and decoding is linear for Raptor. 
o Generating is superlinear 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) and decoding superlinear 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) to 

quadratic O(n2) for Luby Transform.  
o Less efficient than other error correction codes requiring more storage to achieve 

the same level of error correction. 
• Viterbi codes work by generating a series of encoded bits from the original data stream 

using a shift register and feedback. The receiver uses a technique called maximum 
likelihood decoding, which compares the received signal with all possible transmitted 
sequences to determine the most likely sequence. 

o Can detect and correct errors. 
o Complexity is O(N⋅2k), where N is the length of the input sequence and k is the 

constraint length of the convolutional code (defines the memory depth of the 
encoder) 

3.3 Performance (throughput) 

Given the nature of the DNA archive medium, and that archives are built to survive decades, new 
technologies will likely be introduced, making designating absolute CODEC performance 
numbers a challenge. Instead, we provide guidelines on optimization directions and 
considerations when designing a CODEC, to be used as a framework to evaluate CODEC 
performance.  
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1. The CODEC being a computational entity, should be faster than the slowest part of a 
larger system, and provide a level of performance that appears to be subjectively 
reasonable (measured in bytes/bits over time). Specifically, it should encode faster than 
the synthesizer and decode faster than the sequencer on a desktop workstation class of 
computer.  
 

2. The CODEC should have a high efficiency level both computationally and energetically 
(throughput per watt). Throughput should take into account valid archives (the archive 
must conform to the expected format and structure defined by the CODEC), as well as 
different error-handling scenarios within the envelope defined in the Error Correction 
section. 
 

3. The CODEC should be able to be implemented as pure software.  Hardware may be 
employed as an acceleration mechanism, but implementations should not rely on the 
existence of such hardware.  

3.4 Compatibility      

DNA archives are built to survive for decades. An underlying assumption is that the technology 
used to recover the archive will likely not be the same as the one used to encode the archive. 
This raises the question of what is needed to ensure that future archive readers will be able to 
read the archive. 

A CODEC should provide a detailed Codec Format Specification of the archive format it produces. 
This document is provided when registering the CODEC. The Codec Format Specification should 
contain sufficient details to enable the decoding of the archive, including the structures, layout, 
and error correction paradigm. This enables encoder and decoder implementations to vary widely 
based on technologies existing at the time of use, and in particular, regarding decoding, it avoids 
a reliance on decoder technologies that were used at the time of archive creation.  

3.4.1 Codec Format Specification 

The DNA Data Storage Alliance Sector 0 and Sector 1 specifications [45], the so-called DNA 
Archive Rosetta Stone specifications, are a proposed instance of a Codec Format Specification. 
The decoder identification is defined by the Sector 0 specification. The type and version are used 
to look up the remainder of the codec specification in Sector 1, which contains: 

1. Physical media description and parameters - bases, oligo lengths, prefixes/suffixes 
2. Media constraints and tolerances that decoder must be aware of 
3. Complete description of the error correction algorithms in use and how they are used, this 

includes layout diagrams as needed 
4. Specifics of references and details on how to specify formats in the file, for example such 

as defined given by the PRONOM register [46] 
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5. Logical definitions of the file or filesystem format including metadata, logical structures, 
and data layout 

At a minimum, the Codec Format Specification should document the error correction algorithms 
and media parameters and add references to the media standards being used in the encoding. 
While it may not be specific to the media at hand, the Codec Format Specification must have 
enough information to enable the selection of a decoder that is capable of processing the DNA 
archive. 

3.5 Summary of Criteria of DNA Codecs 

In the above sections, we have reviewed DNA Codec requirements and criteria. The following are 
considered the general criteria a CODEC must meet in order to provide the experience desired 
from using DNA as a storage media type. 

Criterion The Codec should … 

Scalability • use sub-quadratic algorithmic complexity as a function of sequence 
length and the number of strands 

Performance • be faster than the slowest parts of the system, such as synthesis or 
sequencing 

• have a high efficiency level both computationally and energetically 
(throughput per watt) 

• be able to be implemented as pure software, even if hardware may be 
employed as an acceleration mechanism 

Error detection 
and correction 

• have an acceptable probability of successful decoding for a given 
amount of data, while this probability should take all 3 types of error into 
account 

Compatibility  • provide a detailed specification of the file format it produces, whereas 
the specification must contain sufficient details to enable reading the 
archive 

Biological 
constraints 

• verify the GC ratio, avoid homopolymers and hybridization, among 
other factors 
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DNA Codecs are an integral part of the DNA data storage pipeline. We believe that standard open 
source codecs will emerge over time, but this will require that the DNA data storage ecosystem 
matures and the technical coupling between the protocol embodied by the codec and the 
chemistry used in the physical parts of the pipeline become more routine [10]. Until then, we hope 
this whitepaper helps to guide codec developers, thereby facilitating the emergence of an 
interoperable DNA data storage ecosystem. 
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4 Annex 1 – Codecs for Linear Tape Open (LTO) 
In tape data storage, Error Correction Coding (ECC) is internal to the hardware design 
(implemented at the Register-Transfer level) to achieve rapid data processing and very high data 
integrity. In many standards including the optical discs and LTO standard, a product code (named 
after the concept of a Cartesian product) is used as the ECC mechanism of the read channel for 
providing highly reliable data protection. A 2-D product code (see Figure 2.1.3) can be constructed 
by concatenating two (conventionally linear) block codes: a code C1 with parameters [n1, k1, d1] 
and a code C2 with parameters [n2, k2, d2], where ni, ki, and di (i = 1, 2) stand for codeword 
length, number of information symbols, and minimum Hamming distance of the code, 
respectively.  

 
Fig 2.1.3: A 2D Product code representation with two constituent codes: C1 and C2. 

A typical construction of the product code P1 = C1 × C2 is shown in Fig. 2.1.3.  using two 
systematic block codes. A k1 × k2 data array (data blob or frame) is first encoded vertically using 
code C2 (coding k1 columns using code C2), and the encoded data are then horizontally coded 
using code C1 (coding n2 rows using code C1). The order of encoding operations does not matter 
as long as the constituent codes are linear. In LTO, constituent linear codes are selected to be 
Reed-Solomon codes. In the later versions of LTO (beginning with LTO7), the constituent codes 
started to encode metadata (such as header information) as well alongside with the user data.  

The decoding is typically achieved by Bounded Distance Decoding -  a low complexity decoding 
algorithm that algebraically relies on “decoding spheres” around the codewords determined by a 
codebook. An example is shown in Fig. 2.1.4. The first constituent code (typically C1) is decoded 
in error correction mode - any word within the sphere decoded to the corresponding codeword in 
the center. In other words, all available redundancy is used to correct for error detection and 
correction. For instance, if there are n (=2 in Fig. 2.1.4) redundant symbols floor(n/2) (=1 in Fig. 
2.1.4) errors can be decoded successfully. If there are more than floor(n/2) errors, depending on 
the number and their distribution along the codeword, the decoder can detect the error but cannot 
correct in which case, all symbols could be labeled/flagged as “erased” (before vertical decoding, 
see 2.1.4). Later in decoding, depending on the decoder failure flags, some of the codewords 
could be labeled as erasures and passed on to the next constituent code decoding (typically C2) 
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now in erasure correction mode (can correct 2 erasures for the code given in Fig. 2.1.4). 
Furthermore, to leverage the full potential of error and erasure correction capabilities of the 
constituent codes (C1 and C2), various techniques are developed such as AI-based mode 
selections and iterations [reference https://patents.google.com/patent/US11990920B2/ ]  
between the decoders to make sure that the decoding operation comes close to the optimal data 
retrieval (in maximum likelihood sense) performance with only minor additional 
complexity/hardware. As part of QoS guarantees, standard LTO ECC parameters (power of error 
correction) are selected such that the bit error rate at the user level is guaranteed to be 10−20 or 
less i.e. an average of 1 bit error in 1020 bits.   

 
Fig 2.1.4: An example decoding process where C1 decoder (horizontal decoding) is operated in error correction and 

C2 decoder (vertical decoding) in erasure correction mode. 

 

 

 

  

https://patents.google.com/patent/US11990920B2/
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