

Abstracting the DNA storage media from the IT world

Olivier Lauvray, VP Industrialization & Partnerships Belaid Hamoum, Molecular IT Computer Scientist, PhD Lambros Michalopoulos, Molecular IT Computer Engineer

Revolutionizing Data Storage with DNA

BUILDING DNA STORAGE SERVERS FOR DATA CENTERS

For various Data Centers:

- Enterprise / Private
- Institutions / Private or Public
- Cloud Service Providers / Public
- Biomemory's

For various use-cases:

- Preservation (regulatory or not)
- Archive
- Back-up / Cloning
- Progressively evolving towards "warmer-storage"

For various scale:

- From KBs (NFTs, keys) to Exabyte-scale (CSP, national archives, etc.)
- Stand-alone or bare-metal (single unit or redundant)
- On-premise cluster
- Distributed and Hybrid Cloud
- Hyperscale

DNA in Data Centers: a demanding environment

Rackable Units (upgradable functional modules)

DNA Cards
(Storage containers
gathered in a rackable library)

Storage Server (rack of enclosure units)

- Dimensions
- Environment
- > Flexibility
- Evolution
- Scalability
- Automation
- Multi-tenant
- System Meta-Data
- Content Meta-data
- Remote Management
- > Interoperability
- Data Integrity
- Reliability
- Resilience
- Security
- Safety
- Compliance
- Opex
- Capex

19"-21"-wide rackable cabinet

5-45 °C and 8%-90% RH

Modular architecture

Upgrades (HW, SW, consumables)

From single unit to clusters

Human-less continuous operation

Virtualization & resource sharing

Life-time tracking

Efficient search & retrieval

External configuration & control

Validated open interfaces

End-to-end very low error rate

Validated degradation models

Efficient fault management

Protection & rights management, biosecurity

Biosafe, no-hazardous components

Tests and Certifications

Low-cost consumables

Cheaper than alternatives

DNA in Data Centers....Leverage the Industry

Rackable Units (upgradable functional modules)

DNA Cards
(Storage containers
gathered in a rackable library)

Storage Server (rack of enclosure units)

- Dimensions
- Environment
- > Flexibility
- Evolution
- Scalability
- Automation
- Multi-tenant
- System Meta-Data
- Content Meta-data
- Remote Management
- Interoperability
- Data Integrity
- Reliability
- Resilience
- > Security
- Safety
- Compliance
- Opex
- Capex

IT industry, OCP

ASRHAE, OCP, SNIA

Biomemory System Architecture

Biomemory System Architecture

SNIA, S3

Biomemory System Architecture

CEPH / S3

Biomemory System Architecture

OAIS, MODS, ISO,...

Swordfish/Redfish

S3, SNIA / DMTF plug-fests

EDAC/ECC, indexing techniques

SNIA/DDSA

Storage industry techniques

SNIA, ISO/IEC 270001, DDSA

ISO, EU & US Biosafety task forces

So many....

Biomemory's biosourcing of consumables

Biomemory System Architecture

Biomemory Modular & Open System

Seamless integration into data centers

The Biomemory DNA storage server works just like any other storage unit (SSD, HDD, tape), with its own features and SLA

*OAM = Operation Administration & Maintenance

Biomemory Storage Server

Key Technology Enablers

Biomemory DNA storage server is seen and accessed like any other data storage unit (SSD, HDD, Tape), with its specific attributes and SLA

System Architecture

- Scalability to reach PB/day write & read operations (2030)
- Endorse the Data Center constraints
- Software-defined system
- Biomaster controls all modules using APIs
- Leveraging S3 for interoperability
- Leveraging CEPH for multi-tenant policy-based scalability
- Life-time tracking, storage & retrieval of system meta-data
- Map to the SNIA Swordfish models for remote management
- Metadata & multi-level indexing for search and management

Advanced algorithms & development tools

- Al-assisted algorithms and signal processing
- End-to-End Digital Twin simulator
- Multi-stage Error Detection & Correction
- Strategy for "cloud-free" processing

What's next?

Towards easier deployment in Data Centers

- ➤ Interoperability with S3-compatible multi-tier platforms
- Finalize the Swordfish model for DNA Data Storage and test for interoperability
- > Open Biomemory's system to 3rd party components / modules (SW or HW)

Thank You

Your questions are welcome

Olivier Lauvray, VP Industrialization & Partnerships Belaid Hamoum, Molecular IT Computer Scientist, PhD Lambros Michalopoulos, Molecular IT Computer Engineer

This slide set is a subset of the full presentation.

To get the full presentation, please send a request to:

Olivier.Lauvray@biomemory.com