
DNA-Based Storage of RDF Graph Data: A Futuristic
Approach to Data Analytics

Mr. Asad Usmani
Supervisor: Prof. Dr. Lena Wiese

Department of Computer Science
Goethe University Frankfurt am Main

20th June 2025

Usmani (GUF) GraphDNA 1 / 15



Problem Statement 1: Why Partial Data Retrieval?

Even though a movie, an image, or a book could be retrieved as a
whole from DNA storage as needed, this is not the same for complex
graph data.

Indeed, compressed data storage is helpful in both synthesis and
sequencing operations to handle data cost-efficiently. However, even
if only partial information is required, it is unnecessary to sequence
and decode the complete archived data about a single complex graph,
which is expensive and impractical.

If future query demands are considered, any of the existing
proposed DNA storage models are not appropriate.

We have, therefore, designed a DNA-based storage model for RDF
graph data, which enables us to retrieve partial information by
sequencing a subset of DNA strands rather than all. Consequently,
this reduces significant sequencing costs and time.

Usmani (GUF) GraphDNA 2 / 15



ID-based Triple Storage (IBTS) Method

Figure: (a) reveals the data modelling of RDF graph data in terms of SPOs. We
store the RDF strings in a dictionary table using an ID-based database model, as
shown in (b). (c,d) show the index tables and bitmaps obtained for efficient
data retrieval.

Usmani (GUF) GraphDNA 3 / 15



DNA Strands Mapping to RDF Graph Data

Figure: (e) depicts the organization of that RDF graph data modelling in the
DNA pool.

Usmani (GUF) GraphDNA 4 / 15



SPARQL Query Processing Algorithm

Figure: The query requests for all the subjects associated with the object:
Spanish Team in the triple pattern (?S, P, O) through the property: playsFor.
(a) The query framework algorithm identifies the dictionary IDs for both of these
RDF string items. (b) Based on the numerical values of both the predicate and
object, we find the IDs of all related subjects. (c) Through reverse mapping from
ID-to-String, we obtain three RDF strings: Iker Casillas, Iniesta and Xavi, using
their IDs: 5, 6 and 14.

Usmani (GUF) GraphDNA 5 / 15



Quantitative Experimental Results

Figure: Plots the line charts on query processing over four different RDF graphs
based on minimum data retrieval by DNA strand size. This figure shows (a) the
total number of strand maps across different strand sizes for each of the four
graphs and (b) the corresponding average number of strands retrieved after
six query processing.

Usmani (GUF) GraphDNA 6 / 15



Statistical Experimental Results

Figure: (Left) With six queries, various strands are accessed multiple times
(referred to as duplicate strands), revealing the number of unique and duplicate
strands for each graph data with a certain payload size. Similarly, with six
queries, an average strand count accessed after an initial query for each graph can
be visualized in the opposite figure (Right).

Usmani (GUF) GraphDNA 7 / 15



Problem Statement 2: Why Fast Partial Data Retrieval?

When it comes to scalability, the prior method consumes numerous
sequencing runs and is not the best option for large graph datasets.

A fewer number of primers means more hamming distance, reducing
the possibility of unwanted data being retrieved and consequently
reducing the amount of data analysis needed. The prior approach
does not restrict us to limited sequencing of undesired data and is
flexible in choosing a primers set available.

Variations in DNA strand length cause the other factors to vary.
Using NGS is best for mapping all strand lengths and is suitable for
achieving results quickly with our new block-based method.

Usmani (GUF) GraphDNA 8 / 15



Block-based Triple Storage (BBTS) Method

Figure: (a) reveals the data modelling of RDF graph data in terms of SPOs. We
store the RDF strings in a dictionary by using an ID-based database model, as
shown in (b). (c) shows the three index tables obtained for efficient data retrieval.

Usmani (GUF) GraphDNA 9 / 15



Block-based Triple Storage (BBTS) Method

Figure: (d) reveals both the block table and combined spo table based on a
block size of 4. Each block table entry contains three fields: a primer address to
amplify the corresponding block contents, an RDF string item and another
address to reach the next block if needed. Finally, (e) depicts the organization of
that RDF graph data modelling as a concatenation of various blocks.

Usmani (GUF) GraphDNA 10 / 15



Mapping Strands to RDF Graph Data

Figure: This figure depicts the mapping structure of four basic payload types:
S, A, P and B of a DNA strand to map RDF graph data components.
Moreover, 18 strands with a payload of 196nt each for the five blocks (P1 — P5)
are used to map the exemplary dataset.

Usmani (GUF) GraphDNA 11 / 15



Quantitative Experimental Results

Figure: The figure shows the data retrieval percentage of four large graphs with
a block size of 768 for six different random queries each.

Usmani (GUF) GraphDNA 12 / 15



Quantitative Comparison Results

Figure: Shows a quantitative analysis of RDF graph datasets using a few key
characteristics. There, the notations Mb, Sm, Sa, Cs , Bs , Sr and Ct express the
memory mapping of payload data in megabytes, number of strands mapped,
number of strands accessed, sequencing cost by percentage, block size,
sequencing runs and sequencing time for partial data retrieval, respectively.

Usmani (GUF) GraphDNA 13 / 15



Conclusion

We presented two strategies: ID-based binary search approach and
Block-based random access method, which offer an efficient
DNA-based query processing system to retrieve partial information.
Specifically, the average partial data retrieval per query as output
is found to be less than 1% for RDF graphs with more than 10MB,
thus reducing both sequencing costs and time.

Usmani (GUF) GraphDNA 14 / 15



Thank you!
Questions?

usmani@mathematik.uni-frankfurt.de

Usmani (GUF) GraphDNA 15 / 15


	Fast RDF-analytics from Large-scale DNA-archives
	Conclusion

