

Fifteen years of real-time stability data at room temperature and accelerated aging: Validation of DNAshell® encapsulation for sustainable DNA data storage

Marthe COLOTTE, Aurélie LUIS, Delphine COUDY, Magali MILHAU, Sophie TUFFET, Jacques BONNET

Marthe COLOTTE, PhD Imagene CTO colotte@imagene.eu

DNA data storage

- Will contribute to resolve the data volume explosion crisis
- Parameters to take into account / challenges to address
 - Scale of storage
 - Information density
 - DNA stability* / data retrieval

Stability often overlooked

- DNA degradation mechanisms and factors
- DNAshell® / RNAshell® technology
- Evaluation of stability
 - Accelerated aging (Arrhenius model)
 - Real time aging @RT

Main mechanisms of degradation

Consequences

- The main and most deleterious event: chain breakage
- The relative importance of hydrolysis and oxidation vary according to:
 - Water content
 - Environment (contaminants, coextractants, ...)

Bonnet *et al.* Nucleic acids research 2010 10.1093/nar/gkp1060 (corrected)

Water is the enemy

How hermetic is a container/sealing?

- Counter intuitive results!
- Inner RH will gradually equilibrate with outer RH
- In a closed but non hermetic system, water uptake has to be taken into account during stability testing (modeling can be tricky)

Bonnet et al. Nucleic acids research 2010 10.1093/nar/gkp1060

New container highly needed!

The Imagene technology

- Imagene's technology: completely remove water, oxygen and ozone and maintain these conditions for efficient and long-term storage.
- Imagene stainless steel capsules: DNAshell® and RNAshell®
 - Stainless steel shell
 - Glass vial
 - Stainless steel cap
- The capsule is sealed by YAG laser welding allowing to maintain the desiccated sample under an inert atmosphere.
- A unique 2D barcodes is engraved on each capsule for full traceability.
- Target markets: biobanking, molecular diagnostics, DNA data storage

1.3 g Space 0.7 cm³ Useful volume 0.2-0.3 mL

Monitoring chain breakage with pDNA

Only one chain break on one of its two strands is sufficient to relax a supercoiled plasmid. The supercoiled plasmid content (SCC) is thus the fraction of intact DNA in the sample. The relaxation is a first order reaction (exponential).

Monitoring chain breakage with gDNA

Degradation time @110°C (h)
Ctrl 0.25 2 4 6 7.5 11 14.5 20.5

- L_{MAX} = size of the maximum of intensity on the gel (single strand)
- → L_{MAX}: from k_T and time t (estimation after Arrhenius equation)
- \rightarrow k_T from time t and L_{MAX} (from gel)

Long term stability evaluation

- Accelerated aging
 - Conduct degradation kinetics at several high temperatures T
 - Measure the degradation rates k_T (chain breaks/nt/s)
 - Plot -log k_T vs 1/T
 - => Arrhenius equation
 - => extrapolation of degradation rates @RT (or any temperature)

^{*}Bonnet, J., et al., Nucleic acids research 2010 10.1093/nar/gkp1060

^{*}Coudy, D., et al., Long term conservation of DNA at ambient temperature. Implications for DNA data storage. PLoS One, 2021. 16(11)

^{*} Fabre, A-L. et al., An efficient method for long-term room temperature storage of RNA. Eur J Hum Genet 2014 Mar;22(3):379-85

^{*} Fabre, A-L. *et al.*, High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere PLOSOne 2017 10.1371/journal.pone.0188547

Long term stability evaluation

- Real time evaluation of degradation rate at room temperature
 - To verify the accelerated aging results
 - To take potential unforeseen parameters into account

^{*} Colotte *et al.* Biopreserv Biobank. 2011 10.1089/bio.2010.0028 This work (unpublished)

^{*} Fabre, A-L. *et al.*, High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere PLOSOne 2017 10.1371/journal.pone.0188547

Material and methods

Source biospecimens and extraction methods

	Purified		In biospecimen	
Biological material	DNA	RNA	DNA	RNA
Cell lines	Organic Salt precip Silica	Phenol/Chlo Trizol	-	Fixed cells Cells on paper
Bacteria	Organic Salt precip Silica Ion exchange	Phenol/Chlo Silica Trizol	-	-
Rat liver	Organic Salt precip	Phenol/Chlo Silica Trizol	-	-
Blood	Organic Salt precip	Paxgene	Lysed WBC Lysed BC	-
Saliva	Organic Salt precip	-	-	-
Plant	Organic Silica	-	-	-

Processing

- Collection of the biospecimens
- Purified NA: extraction + QC
- NA in biospecimen: lysis for DNA in blood cells / Cell fixation or deposition on paper for RNA
- Addition of stabilization proprietary solutions
- Aliquoting in the minicapsules
- Desiccation
- Encapsulation (laser sealing under argon)

Material and methods

- Accelerated aging simulated 25-100 yrs: no degradation (not shown)
- Real-time long term storage
 - Capsules stored at room temperature without moisture and temperature control (15°C 30°C / 50 % RH)
 - Control capsules stored at -20°C
 - Controls in solution stored at -20°C (DNA) or -80°C (RNA)

- Post-storage analysis
 - Opening of the minicapsules with a shellOpener
 - Rehydration
 - Extraction for biospecimen (salt precipitation for DNA / Trizol for RNA)
 - QC (not shown)
 - Electrophoresis agarose gels/ Bioanalyzer (RIN)
 - RT-qPCR / RT-dPCR analysis (not shown)

Results

Purified DNA

Heat denaturation + 0.8% agarose gel – TAE buffer – EtBr staining - Size in kb

$$L_{max} > 20 \text{ kb after t= } 14.5 \text{ yrs => } k_{25^{\circ}\text{C}} < 1.09 \text{x} 10^{-13} \text{/nt/s}$$

Plasmid DNA

0.8% agarose gel – TAE buffer – EtBr staining

 $m/m_0 = 0.93$ after t = 15 yrs => $k_{25^{\circ}C} = 1.4 \times 10^{-14} / nt/s$

Colotte *et al.* Biopreserv Biobank. 2011 10.1089/bio.2010.0028

5.5 years

Accelerated vs real-time

Redrawn from Coudy, D., et al., Long term conservation of DNA at ambient temperature. Implications for DNA data storage. PLoS One, 2021. 16(11)

Purified RNA

DNA and RNA in biospecimen

Heat denaturation + 0.8% agarose gel – TAE buffer – EtBr staining - Size in kb

Conclusions

- DNAshell /RNAshell is the most advanced available technology for DNA/RNA stabilization, with 15 years of recorded performance
- To build confidence in DNA data storage, it is imperative to:
 - Use validated methods (SNIA standard) & run all necessary controls
 - Use high-sensitive methods to demonstrate stability (easy to hide poor performance)

Thank you!

Marthe COLOTTE, PhD Imagene CTO colotte@imagene.eu

Publications for DNA preservation

External

In house

DNA

Stabilité chimique et conformationnelle de l'ADN à l'état sec et à température ambiante

Thèse de Marthe Colotte (2008)

Chain and conformation stability of solid-state DNA: implications for room temperature storage DOI: 10.1093/nar/gkp1060

Simultaneous assessment of average fragment size and amount in minute samples of degraded DNA - DOI: 10.1016/j.ab.2009.02.003

Adverse effect of air exposure on the stability of DNA stored at room temperature

DOI: 10.1089/bio.2010.0028

Novel procedure for high yield recovery of traces amounts of DNA stored at room temperature

Poster - ESBB

Assessment of DNA encapsulation, a new roomtemperature DNA storage method INSTITUT PASTEUR

DOI: 10.1089/bio.2013.0082

Evaluation of DNA/RNAshells for room temperature nucleic acids storage DOI: 10.1089/bio.2014.0060

Preservation of biospecimens at ambient temperature: special focus on nucleic acids and opportunities for the biobanking community

DOI: 10.1089/bio.2015.0022

Quality Matters: 2016 Annual Conference of the National Infrastructures for Biobanking

DOI: 10.1089/bio.2016.0053

Ensuring the Safety and Security of Frozen Lung Cancer Tissue Collections through the **Encapsulation of Dried DNA**

DOI: 10.3390/cancers10060195

DNAshell Protects DNA Stored at Room Temperature for Downstream Next-Generation Sequencing Studies

DOI: 10.1089/bio.2018.0129

INSTITUT Inserm

BMHM

2021

DNA reference material

A novel method for room temperature distribution and conservation of RNA and DNA reference materials for guaranteeing performance of molecular diagnostics in onco-hematology: A **GBMHM** study

DOI: 10.1016/j.clinbiochem.2015.04.004

White Blood Cells & Buffy coat

High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere

DOI: 10.1371/journal.pone.0188547

Synthetic DNA

→ DNA data storage

Long term conservation of DNA at ambient temperature. Implications for DNA data storage

DOI: 10.1371/journal.pone.0259868

An Empirical Comparison of Preservation Methods for Synthetic DNA Data Storage

DOI: 10.1002/smtd.202001094

UNIVERSITY of WASHINGTON

Microsoft Research

Publications for RNA preservation

华大基因

External

In house

GBMHM

RNA

An efficient method for long-term room temperature storage of RNA

DOI: 10.1038/ejhg.2013.145

Evaluation of DNA/RNAshells for room temperature

nucleic acids storage
DOI: 10.1089/bio.2014.0060

Long-term room temperature storage of dry ribonucleic acid for use in RNA-Seq analysis 华大基因

DOI: 10.1089/bio.2017.0024

RNA Reference material

A novel method for room temperature distribution and conservation of RNA and DNA reference materials for guaranteeing performance of molecular diagnostics in onco-hematology: a GBMHM study

DOI: 10.1016/j.clinbiochem.2015.04.004

Synthetic RNA

→ Reference material SARS-CoV-2

Reference materials for SARS-CoV-2 molecular diagnostic quality control: validation of encapsulated synthetic RNAs for room temperature storage and shipping

DOI: 10.1101/2023.08.28.555008

→ Certified Reference material SARS-CoV-2

Certification of the identity and the copy number concentration of synthetic single-stranded RNA including fragments of the SARS-CoV-2 genome and part of the human RNAse P gene: EURM®-014k – JRC Reference Material report.

14

2017

223

024

Publications for Biospecimen

External

In house

Blood biomarkers (for diagnostics)

Stability of newborn screening markers in dried-blood spot (DBS): the innovative imagene solution.

Poster - SFEIM

Live bacteria & viruses

ANVBIS3 – Acides nucléiques, virus & bactéries d'intérêt en stockage standardisé et sécurisé

Poster - 6ème Forum DGA innovation

Spermatozoa (for nucleus transfert)

Reviving Vacuum-Dried Encapsulated Ram Spermatozoa via ICSI after 2 Years of Storage

DOI: manuscript accepted

Fertility preservation of vacuum-dried ram spermatozoa stored for four years at room temperature

Theriogenology – Vol 239, June 2025, 117390

. .

2017