

Innovation in Storage Products, Services, and Solutions

June 13-15, 2016

Marriott San Mateo

San Mateo, CA

Deploying and Optimizing for Cloud Storage Systems using Swift Simulator

Gen Xu Intel Corporation

Agenda

- Design challenges
- Cloud Storage system Swift modeling overview
- Use Case study

Cloud Storage System Design Challenges

Our customers are commonly addressing these challenges:

- ✓ Plan storage capacity?
- ✓ Not over provisioning?
- ✓ Meet the SLA/SLO requirements?
- ✓ Minimize cost?
- ✓ Predict system performance?

Complex Cluster Architecture

Simulation Architecture

Details @ ICPP-2014 paper "Simulating Big Data Clusters for System Planning, Evaluation and Optimization"

Agenda

- Design challenges
- Cloud Storage system Swift modeling overview
- Use Case study

Swift Simulator

Logic View of a SwiftCluster

Frontend model of Simulation

Backend model: System Topology (Star, CLOS...), Ring parsing, Node mapping, Coroutine scheduling, Perf Lib

Simulation Accuracy

Hardware Validation

- STAR, Fat-Tree, CLOS
- 1GbE, 10GbE, 25GbE, 50GbE
- HDD, SSD, NVMe
- Node count
- **-** ...

Software Validation

- Operation Type (PUT, GET, MIX)
- Object Size (16KB ~ 1024MB)
- Proxy worker#, Object worker#
- Concurrency#
- Write Barrier

Simulation Approach

Output: Workload and H/W metrics

Agenda

- Design challenges
- Cloud Storage system Swift modeling overview
- □ Use Case study

Case Study: Optimize one cloud storage system

Object type	Object size		
Thumbnail	16KB		
Audio	16MB		

Design Goal: Achieve to 2X IOPS and 2X bandwidth for both small objects and large objects in read, write and mixed scenarios

Design options

Software optimization

□ H/W scale up: Storage, Network, CPU

H/W scale out: add more nodes

Validation against baseline setup

Higher than 95% average accuracy Ready to use simulator to predict performance

Software optimization

Up to 1.5x improvement with software optimization Set worker count for proxy and storage to 2 or 3 times the core count

Scale up: HDD -> SSD

Expect SSDs to improve performance over HDD based storage

Scale up: 10GbE -> 25GbE

Scale up: XEON E5-2695 v3 -> E5-2699 v4

Frequency: Core count: 14 vs. 22

Up to 1.58x improvement with CPU optimization

Scale-up optimization summary

Up to 6.73x improvement with scale-up optimization

Scale out optimizing

Up to 2x improvement with scale-out optimization Better scale up firstly, then scale out

Optimization analysis

- □ Set worker count for proxy and storage to 2 or 3 times the core count.
- SSD improves performance over HDD.
- 10Gb is okay for small objects. Need to update network for large objects.
- CPU efficiency is high for small objects.
- □ Better scale up firstly, then scale out.
- Properly configure ratio of proxy to storage server.

cofluent.intel.com

Backup

What's Inside

INTEL® COFLUENT™ TECHNOLOGY FOR BIG DATA

Solutions for big data cluster Simulation, Planning and Optimization

Intel® CoFluent™ Technology for Big Data

FASTER CLUSTER DEPLOYMENT:

Explore deployment options and meet performance goals

OPTIMIZE CLUSTERS:

Find performance bottlenecks and optimize software operation

SCALE UP WITH CONFIDENCE:

Simulate to determine the minimum cost to meet your future demand

Intel® CoFluent™ Studio Based Simulation

Enables fast "What if?" analysis with a virtual system

Hardware Coverage

Validated: 700 Nodes

Rack Scale Architecture

Fast Simulation

Host machine to run simulations

Swift Simulation Input

- Workload Parameters
 - Concurrency
 - Request Size
- S/W Settings
 - Role setting (proxy, storage) for each node
 - Object ring
 - Proxy/object worker number
 - Object size
- H/W Settings:
 - Cluster size
 - System Components (CPU, Disks, Memory, Network)
 - Network topology

Storage Optimizing: HDD VS SSD

Storage Devices Assumed Performance

Class	Туре	IOPS		Throughput	
Storage Device	capacity	RND 4KB 100%R	RND 4KB 100%W	SEQ 64KB 100%W	SEQ 64KB 100%R
SSD S3700	1TBGB	47,806	59,415	403MB/s	492MB/s
7200 RPM HDD	1TB	390	410	180MB/s	180MB/s

Heterogeneous Storage

