Introduction to Data Protection: Backup to Tape, Disk and Beyond

Tom Sas / Hewlett Packard Enterprise

Author:
SNIA - Data Protection & Capacity Optimization (DPCO) Committee
SNIA Legal Notice

- The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted.
- Member companies and individual members may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced in their entirety without modification
 - The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.
- Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.
- The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
About the SNIA DPCO Committee

- This tutorial has been developed, reviewed and approved by members of the Data Protection and Capacity Optimization (DPCO) Committee which any SNIA member can join for free
- The mission of the DPCO is to foster the growth and success of the market for data protection and capacity optimization technologies
 - Online DPCO Knowledge Base: www.snia.org/forums/dpco/knowledge
- 2016 goals include educating the vendor and user communities, market outreach, and advocacy and support of any technical work associated with data protection and capacity optimization

Check out these SNIA Tutorials at www.snia.org/education/tutorials
- Trends in Data Protection
- Protecting Data in the Big Data World
- Advanced Data Reduction Concepts
- Privacy vs Data Protection – The impact of EU Legislation
Abstract

Introduction to Data Protection: Backup to Tape, Disk and Beyond

Extending the enterprise backup paradigm with disk-based technologies allow users to significantly shrink or eliminate the backup time window. This tutorial focuses on various methodologies that can deliver efficient and cost effective solutions. This includes approaches to storage pooling inside of modern backup applications, using disk and file systems within these pools, as well as how and when to utilize Continuous Data Protection, deduplication and virtual tape libraries (VTL), as well as the cloud.

Learning Objectives:

- Get a basic grounding in backup and restore technology including tape, disk, snapshots, deduplication, virtual tape, replication technologies and cloud
- Compare and contrast backup and restore alternatives to achieve data protection and data recovery
- Identify and define backup and restore operations and terms
Agenda

- Fundamental concepts in Data Protection
- Overview of Backup Mechanisms
- Backup Technologies
Data Protection: Defined

- SNIA definition of Data Protection: **Assurance** that data is not corrupted, is accessible for authorized purposes only, and is in **compliance** with applicable requirements.

- There are a wide variety of tools available to us to achieve data protection, including backup, restoration, replication and disaster recovery.

- It is critical to stay focused on the actual goal -- availability of the data -- using the right set of tools for the specific job -- within time and budgets.

- Held in the balance are concepts like the value of the data (data importance or business criticality), budget, speed, and cost of downtime.
Data Protection Design Trade-offs

Assessing your priorities

- Backup window
 - Shorten or eliminate
- Recovery Time Objective (RTO)
 - Speed of recovery
 - What is the cost of application downtime?
- Recovery Point Objective (RPO)
 - Amount of data loss
 - How far back in time to recover data?
- Move data offsite for Disaster Recovery (DR)

There are trade-offs everywhere

- Newer technology improves but may not eliminate trade-offs
 - Cost, downtime, business impact
- Need to identify the priority order, and establish SLA (Service Level Agreement) targets for each data type
 - What is the cost of a lost application?
The Process of Recovery

- **Detection**
 - Corruption or failure reported

- **Diagnosis / Decision**
 - What went wrong?
 - What recovery point should be used?
 - What method of recovery should be used -- overall strategy for the recovery?

- **Restoration**
 - Moving the data from backup to primary location
 - From tape to disk, or disk to disk, or cloud to disk; Restore the lost or corrupted information from the backup or archive (source), to the primary or production disks

- **Recovery – Almost done!**
 - Application environment – perform standard recovery & startup operations
 - Any additional steps
 - Replay log may be applied to a database
 - Journals may be replayed or a file system

- **Test and Verify**
Traditional Recovery

Last Known-Good Image

Modifications Since Last Image

Recovery Point Objective

Drives

Recovery Time Objective

Analyse

APPLICATION DOWNTIME

Detect

Restore*

Recover

Application Restarted

* Example: 10TB = 3 hours from disk, 5 hours from tape
Protection Based on Recovery

Recovery Point

Recovery Time

Protection Methods
- Tape Backups
- Capture on Write
- Archival
- Disk Backups
- Synthetic Backup
- Snapshots
- Data Replication
- Cloud Backup

Recovery Methods
- Instant Recovery
- Restore from Tape, Disk, Cloud
- Point-in-Time Recovery
- Roll Back
- Search & Retrieve

Years Days Hrs Mins Secs

Secs Mins Hrs Days ????
Backup Methodologies

- **Cold**
 - Offline image of all data
 - As backup window shrinks & data size expands, cold backup becomes untenable
 - Cheapest and simplest way to backup data

- **Application Consistent**
 - Application supports ability to take parts of data set offline during backup
 - Application knows how to recover from a collection of consistent pieces
 - Avoids downtime due to backup window

- **Crash Consistent or Atomic**
 - Data copied or frozen at the exact same moment across entire dataset
 - Application recovery from an atomic backup similar to an application failover
 - Rebuilding may be needed
 - No backup window
Fundamental concepts in Data Protection
Overview of Backup Mechanisms
Backup Technologies
Backup Networking 101

LAN

Network Clients

Application Hosts

Backup Hosts

Network Attached Storage

SAN Attached Storage

SAN

Backup Targets

Direct Attached Storage
“Cloud” Backup

- CLOUD
- LAN
- WAN

Network Attached Storage
Direct Attached Storage
SAN Attached Storage
Backup Targets

SAN

Network Clients
Application Hosts
Backup Hosts

Storage Media Library
LAN Backup

- Backup server receives data and Metadata from application server across the LAN
 - LAN is impacted by both backup and restore requests
 - Application server may be impacted by storage I/O
 - CIFS, NFS, iSCSI, NDMP, or vendor specific
The application server allocates a snapshot/mirror of the primary storage volume to a media server that delivers the data over the LAN or SAN.

- Media server must understand the volume structure
 - Mirror: Application server impacted when creating the mirror
 - Snapshot: Application server impacted by volume access
- Metadata over the LAN to the backup server
Backup server delegates the data movement and I/O processing to a “Data-mover” enabled on a device within the environment.

- **Network Data Management Protocol (NDMP)**
 - NDMP is a general open network protocol for controlling the exchange of data between two parties.
Cloud Backup

- Intelligent host-based agent
 - Saves changes and unique blocks
- Security and control issues
 - Secure VPN / IPsec Tunnel
 - Encryption “in-flight” and “at-rest”
- (-) WAN network performance
 - Can use local cache to mitigate (“hybrid cloud”)
- (+) Lower CAPEX
- (+) Off-site protection
Traditional Backup Schedules

- **Full Backup**
 - Everything copied to backup (cold or hot backup)
 - Full view of the volume at that point in time
 - Restoration straight-forward as all data is available in one backup image
 - Huge resource consumption (server, network, tapes)

- **Incremental Backup**
 - Only the data that changed since last full or incremental
 - Change in the archive bit
 - Usually requires multiple increments and previous full backup to do full restore
 - Much less data is transferred

- **Differential backup**
 - All of the data that changed from the last full backup
 - Usually less data is transferred than a full
 - Usually less time to restore full dataset than incremental
Synthetic Backup & Incremental Forever

Synthetic Full Backups
- Incremental backups are performed each day
 - Full backups are constructed from incrementals typically weekly or monthly
 - Less application server and network overhead

Incremental Forever
- Incremental backups are performed every day
- Primary backups are often sent to disk-based targets
- Collections of combined incrementals used for offsite copies
 - Usually consolidate images from clients or application and create tapes
 - May construct synthetic full in the cloud
What gets Backed Up and How

❖ File-level backups
 ✔ Any change to a file will cause entire file to be backed up
 ✔ Open files often require special handling SW
 › Open files may get passed over – measure the risks
 ✔ PRO: Ease of BU and restore
 ✔ CON: Moves tons of data

❖ Client-side backups
 ✔ Intelligent agent monitors changes and protects only new files or blocks
 ✔ Agent enables advanced technology, granular backups and user policies
 ✔ Deduplication can enable network efficiency, reduce BU data volume
 ✔ PRO: Efficiently distributes work
 ✔ CON: Complex client/server
What gets Backed Up and How (Cont.)

- **Block-level backups**
 - Only the blocks that change in a file are saved
 - Requires client-side processing to discover changed blocks
 - **PROs:** Smaller backups, less network impact, faster
 - **CONs:** Client-side impact, increased complexity
Backup to Tape, Disk and Beyond

- Fundamental concepts in Data Protection
- Overview of Backup Mechanisms
- Backup Technologies
Introduction to Tape

- Sequential access technology
 - Versus random access
- Can be removed and stored on a shelf or offsite
 - Disaster recovery
 - Encrypted, archived for compliance
 - Reduced power consumption
- Media replacement costs
 - Tape life, reusability
- Performance and Utilization
 - Can accept data at very high speeds, if you can push it
 - Streaming and multiplexing
- Typically Managed by backup and recovery software
 - Controls robotics (Inventory)
 - Media management

Tape is not Dead!
Tape Based Backup: Considerations

- Tape drives run faster than most backup jobs – Is this good?
 - Matching backup speed is more important than exceeding it
 - Avoid shoe-shining

- Slower hosts can tie up an expensive drive
 - It’s a shame to waste a drive on these hosts

- Slower tapes can tie up expensive (important) servers
 - It is a shame to let the tape drive throttle backup servers
 - Slow backup can impact production servers as well

- Replacing your tapes infrastructure may not solve your backup challenges
 - A well designed backup architecture is the best answer

- If backup target speed is your issue:
 - Consider alternates such as virtual tape (VTL) or D2D2T

- Security, security, security…
Introduction to B2D / D2D

What?
- Backup to Disk / Disk to Disk Backup
- Disk as a primary backup target

Why?
- Performance and reliability
 - Reduced backup window
 - Greatly improved restores
 - RAID protection
 - Eliminate mechanical interfaces
- More effective sharing of backup targets

Considerations
- Fibre Channel Disks versus SATA versus SAS
 - I/O random access vs. MB/s sequential
- SAN, NAS or DAS
- VTL or mirroring
- Consider a mix of Disk and Tape (D2D2T)
- Consider a capacity-optimized appliance
Introduction to VTL

- **What:**
 - Virtual Tape Libraries emulate traditional tape
 - Fits within existing backup environment
 - Easy to deploy and integrate
 - Reduce / eliminate tape handling

- **Why:**
 - Improved performance and reliability (see B2D)
 - Reduced complexity versus straight B2D or tape
 - Unlimited tape drives reduce device sharing, improve backup times
 - Enables technologies such as remote replication, deduplication

- **Considerations:**
 - Easy to manage in traditional backup software environment
 - Can extend the life of current physical tape investment
Introduction to CDP

- **What:**
 - Continuous Data Protection
 - Capture every change as it occurs
 - May be host-based, SAN-based, array-based
 - Protected copy in a secondary location
 - “Roll back” to any point in time

- **How:**
 - Block-based
 - File-based
 - Application-based

- **Why:**
 - Implementations of true CDP today are delivering zero data loss, zero backup window and simple recovery; CDP customers can protect all data at all times and recover directly to any point in time
 - “Near CDP” (Snapshots, checkpoints) may also help but will not catch every change
Contrasting CDP and Replication

❖ Replication is not CDP (Synchronous)
 ❖ Replica or mirror is a single Point-in-Time copy of the data
 ❖ Multiple replicas plus logs can create multiple points in time

❖ Snapshots are not CDP (Asynchronous)
 ❖ Data loss possible if crash or corruption happens between snaps
 ❖ Snapshots frequently to same system as primary
 ❖ Lack continuous index with embedded knowledge of relationship of data to files, folders, application and server

❖ Backups (even multiple backups) are not CDP:
 ❖ Schedule frequency
 ❖ Database logging can provide additional granularity but still not CDP
Introduction to Snapshots

What?
- A disk based “instant copy” that captures original data at a point in time
 - Snapshots can be read-only or read-write
- Also known as Checkpoint, Point-in-Time, Stable Image, Clone
- Often handled at the storage level
 - May be done at application server, hypervisor, and/or in cloud

Why?
- Allows for complete backup or restore
 - With application downtime measured in minutes (or less)
- May be able to be combined with replication
- Most vendors: Image only = (entire Volume)
- Backup/Restore of individual files is possible
 - If conventional backup is done from snapshot
 - Or, if file-map is stored with Image backup
Snapshot Considerations

<table>
<thead>
<tr>
<th></th>
<th>Full Copy Snapshots</th>
<th>Differential (or “Delta”) Copy Snapshots</th>
</tr>
</thead>
</table>
| **Upsides** | ➤ Minimal performance impact
 ➤ Independent copy available for DR | ➤ Less storage consumption
 ➤ Often takes advantage of cheaper disk |
| **Downsides** | ➤ High disk utilization
 ➤ No GEO-redundant protection | ➤ Performance may be impacted
 ➤ Dependent on primary copy |
| **Applications** | ➤ Disaster Recovery
 ➤ Near zero backup window
 ➤ Fastest restore
 ➤ Valuable for data repurposing | ➤ Backup source
 ➤ Near zero backup window
 ➤ Fast restore
 ➤ Can help with data repurposing
 ➤ Beware performance impact |
Introduction to Data Deduplication

What?
- The process of examining a data-set or I/O stream at the sub-file level and storing and/or sending only unique data
- Client-side SW, Target-side HW or SW, can be both client and target

Why?
- Reduction in cost per terabyte stored
- Significant reduction in storage footprint
- Less network bandwidth required

Considerations
- Greater amount of data stored in less physical space
- Suitable for backup, archive and now more often primary storage
- Enables lower cost replication for offsite copies
- Beware of 1000:1 dedupe claims – Know your data and use case
- Multiple performance trade-offs
Factors Impacting Space Savings

<table>
<thead>
<tr>
<th>More Effective Deduplication</th>
<th>Less Effective Deduplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data created by users</td>
<td>Data captured from mother nature</td>
</tr>
<tr>
<td>Low change rates</td>
<td>High change rates</td>
</tr>
<tr>
<td>Reference data and inactive data</td>
<td>Active data, encrypted data, compressed data</td>
</tr>
<tr>
<td>Applications with lower data transfer rates</td>
<td>Applications with higher data transfer rates</td>
</tr>
<tr>
<td>Use of full backups</td>
<td>Use of incremental backups</td>
</tr>
<tr>
<td>Longer retention of deduplicated data</td>
<td>Shorter retention of deduplicated data</td>
</tr>
<tr>
<td>Continuous business process improvement</td>
<td>Business as usual operational procedures</td>
</tr>
<tr>
<td>Format awareness</td>
<td>No format awareness</td>
</tr>
<tr>
<td>Temporal data deduplication</td>
<td>Spatial data deduplication</td>
</tr>
</tbody>
</table>

Don’t forget about compression!
Next Steps in Data Protection

 بداية الملف: دعم الاتصالات الإستخباراتية، وصولًا إلى خذل

1. Choose the appropriate level of protection
 - Assess risk versus cost versus complexity
 - Include your “customers” in your decisions

2. Match RPO and RTO goals with technology
 - Consider resources required to support your decisions
 - Consider centralized versus distributed solutions

3. Performance is ALWAYS a consideration
 - Assess your system today for strengths and weaknesses
 - A new box or new software may NOT be the answer

4. Use archive to reduce the volume of data to be backed up

5. When in doubt, call in the experts
Where to Get More Information

Related tutorials

- Advanced Data Reduction Concepts
- Trends in Data Protection and Restoration Technologies
- Managing Backup and Recovery in Today’s Agile, Complex and Heterogeneous Data Centers
- The Changing Role of Data Protection in a Virtualized World
- Protecting Data in the Big Data World
- Retaining Information for 100 Years

Visit the Data Protection and Capacity Optimization Committee (DPCO) website http://www.snia.org/forums/dpco/

DPCO – Data Protection Best Practices White Paper
http://www.snia.org/forums/dpco/

DPCO – Online Product Selection Guide
http://www.snia.org/forums/dpco/psg
The SNIA Education Committee thanks the following individuals for their contributions to this Tutorial:

Authorship History

Original Author: DPCO Committee, 8/2010

Updates:

- DPCO Committee, 9/2010
- DPCO Committee, 2/2012
- DPCO Committee, 8/2012
- DPCO Committee, 2/2013
- DPCO Committee, 8/2013
- DPCO Committee, 3/2015
- DPCO Committee, 4/2016

Additional Contributors

- David A. Chapa
- Kevin Dudak
- Mike Dutch
- Mike Fishman
- Larry Freeman
- David Hill
- Jason lehl
- Tom McNeal
- Gene Nagle
- Ronald Pagani
- Thomas Rivera
- Tom Sas
- Gideon Senderov
- Paul Talbut
- SW Worth

Please send any questions or comments regarding this SNIA Tutorial to tracktutorials@snia.org