

1

Innovation in Storage Products, Services, and Solutions

June 13-15, 2016

Marriott San Mateo

San Mateo, CA

Storage Implications of Cognitive Computing

Balint Fleischer & Jian Li Huawei 6/13/2016

Some examples of Unstructured Data

Financial and legal documents Email, Blog Research papers Video and Social Network postings Patient records Industry reports, Market Studies Regulatory publication

Build a Highly Scalable Storage

Some examples of Unstructured Data

Financial and legal documents Email, Blog Research papers Video and Social Network postings Patient records Industry reports, Market Studies Regulatory publication

Some examples of Unstructured Data

Financial and legal documents Email, Blog Research papers Video and Social Network postings Patient records Industry reports, Market Studies Regulatory publication

Process it with an Analytic Platform

Utilize it on a Cognitive Computing Platform

Some examples of Unstructured Data

Financial and legal documents Email, Blog Research papers Video and Social Network postings Patient records Industry reports, Market Studies Regulatory publication

Integrate with our knowledge base

Cognitive Computing (AI System)

Augmenting (Enhancing, Scaling and Accelerating) human expertise

&

Transforming human <-> Computer interaction

Business Benefits

- · Identify connections between events, people and trends
- Discovery of new insights, uncover breakthroughs and predict trends through real time understanding of current and historical data
- · Enabling new customer experience via service personalization
- Reinvention of business models and operations

Supporting Functionality

- Evolve with goals and respond to changes
- Participate in the shared discovery process and problem refinement iteration
- Understand meaning, goal, syntax, regulation, time, etc.
- Utilizes real time sensory and behavioral inputs as well as contextual data

A growing number of use cases benefiting from Interactive Cognitive Systems

Analytics vs. Cognitive Computing

Responsive & Accurate

gapingvoid art

Example use case: Enhancing Mobile User Experience

Example use case: Future Enterprise Management System

Data Sources

Why is Cognitive Computing is different?

- □ Focusing on Human-Computing Interaction
- Computationally intensive
- Cognitive Computing typically has a response time constraint (QoS)
- Working on Large Data sets
- Data access latency is critical to performance
- Data Access Patterns differ from Analytics (Sparse matrix, Graph etc.)
- Context (state) matters!
- Data Needs to be sharable across applications implementing pipelines
- Multi tenancy with QoS is key to achieve economics

Huawei's Vision for Cognitive Computing

Highly Optimized for Interactive usages

Al based architecture developed for Human-Computer Symbiosis.

Tight integration of Event and Context Data Processing engines tuned for performance and real time execution

Extensible Libraries

Product recommendation, Media Sentiment Analytics, Fraud detection, Ranking systems, NLP, Speech to Text and Text to Speech, Tradeoff analytics, Visual Recognition, Cognitive insight, Etc

Cognitive Computing Platform

Compressing the Storage Hierarchy

Further Reducing Application to Data Latency

Storage for Cognitive Computing

Memory and information processing in neuromorphic systems Giacomo Indiveri and Shih-Chii Liu Senior, IEEE Proceedings 2015 Saffron Technology

Cognitive Computing Optimized Storage Stack

Model Data Store

- Cluster wide, Resilient and Elastic
- Very low latency to support random access*
- Pipeline data into on die Engine Data Store
- Direct Data Access by applications
- Mapped onto main memory and next gen fast NVME drives
- Data Parallel and Model Parallel modes
- Assist functions for Objects, Graphs, Matrices
- Fast access to **Context Store**

Context Data Store

- Cluster wide, Persistent, Resilient and Elastic
- Stores Pre computed data and Context info
- Mapped onto direct attached NVMe drives

Historical Data Store

- Data Center wide, Network Attached, Persistent, Resilient and Elastic
- Stores Historical and Reference data

Mapping to Classic Storage Hierarchy

Enabling Cognitive Computing with Cloud Services Huawei's Data Function Virtualization Platform Vision

Post Provisioning Functional Examples

DFV Data Container model

Data Container per application Application can be stand alone or clustered Attributes are application specific Locality management, Storage semantics, Tiering policy, Resiliency Policy, Security, Performance, Sharing semantics, Etc.

DFV Control Plane functions

Pool management, Allocation, Data Services, Data Pool classes, Migration, Staging, Recovery Assist, Elasticity management, Global replication, Etc.

* Note, Analytics and Cognitive Platforms maybe running in containers

Summary

Augmenting human expertise yield great business value

- New technologies, such as new Memory, high core count CPUs, fast Fabrics and various accelerators are critical HW ingredients of Cognitive Computing Platforms
- □ New Software innovations coupled built on Near Data Processing enables the
 - delivery these High Performance, Responsive Cognitive Platforms
- Re architecting of the storage stack will make it possible to scale cloud architectures to support high performance solutions
- Huawei is developing a comprehensive vision addressing these changes

2016 Data Storage Innovation Conference. © Huawei. All Rights Reserved.