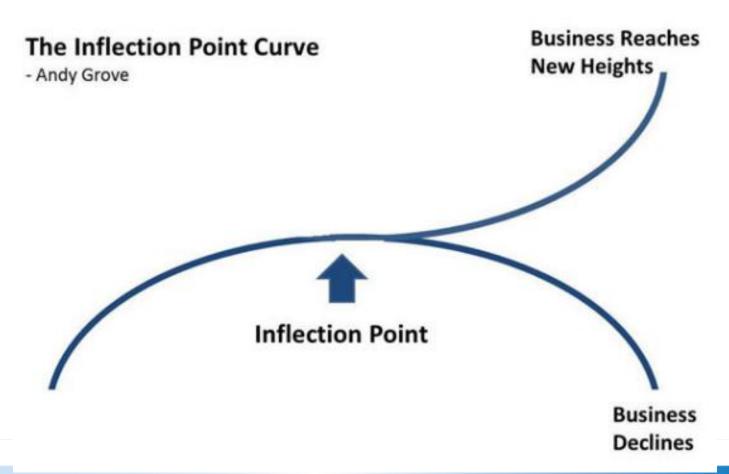


Innovation in Storage Products, Services, and Solutions

June 13-15, 2016

Marriott San Mateo


San Mateo, CA

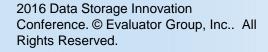
Enterprise Architectures The Pace Accelerates

Camberley Bates
Managing Partner & Analyst

Change is constant in ITBut some changes alter forever the way we do things

Inflections & Architectures

- Solid State
- □ Service Delivery & "Cloud"
- Data Protection



Solid State Transitions

- Flash Today and Tomorrow
 - Continue to get less expensive greater density, though improved manufacturing process & capacity
 - Different classes of flash will be available
 - □ Based on longevity, number of writes
 - Economics move towards use in long-term storage ->15 years
- Product Differentiation
 - SSD form factor vs custom
 - Interface and protocol differences disk-based vs. non-volatile memory based
 - Data reduction where and how implemented
 - Data Services

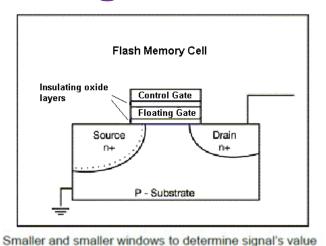
All Primary Storage Moving to All Solid State

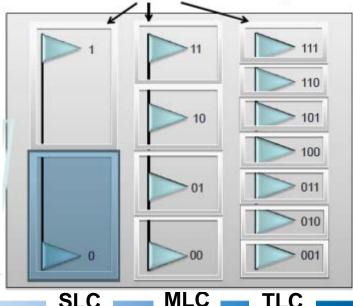
- Multiple Islands vs Single Solution
- Scale up vs Scale out to match performance vs capacity needs
- Traditional arrays / systems repurposed for non-primary storage
 - Larger capacity disks & lower access demand
- Enterprise-class all solid state systems
 - Availability and feature sets expected
 - Move away from SSDs that emulate disk drives – PCIe and NVMe

Primary Storage

Performance critical apps
All Flash

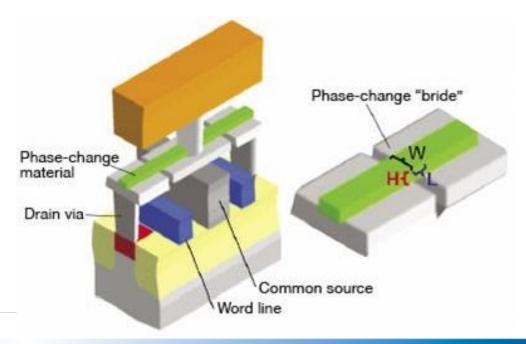
Secondary Storage


Other
Application
Storage:
Traditional
Storage with
Flash Added

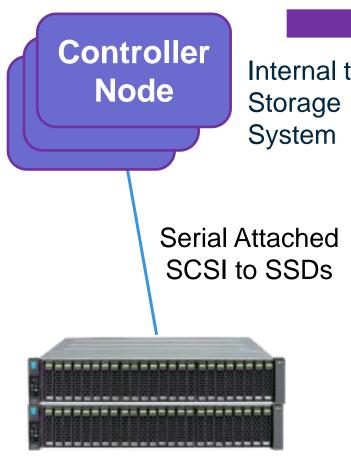


Where we are now – Flash Storage

- NAND Flash technology
 - Continued advances in technology
 - 3D NAND Flash stacked
 - □ Greater endurance
 - ☐ Greater density and lower cost
- Now in the storage systems
 - Larger capacity lower cost
 - Factor in expanding workloads
 - Reliability of Flash changing the TCO



SLC


Solid State Storage Devices

- Non-volatile memory technology
 - Data is persistent even with loss of power
 - Length of time data is retained can vary based on technology
 - Technology evolving
 - NAND flash
 - MRAM
 - Memristor
 - Resistive RAM
 - □ PCM
 - □ 3D XPoint

Transitions in Flash Deployments

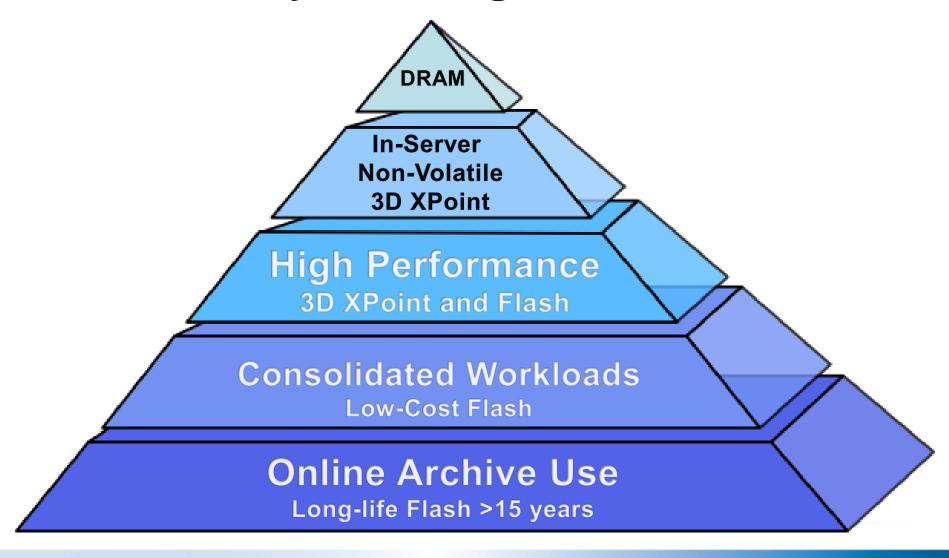
Internal to

3D XPoint for caching

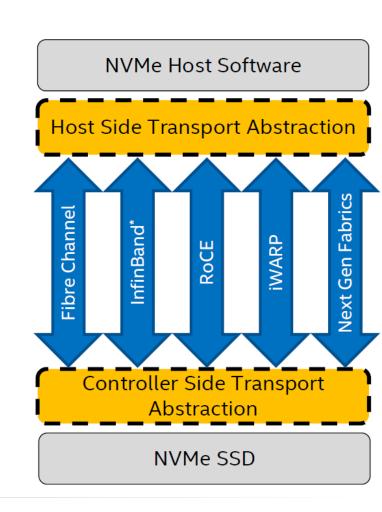
PCIe Extended Connections

Internal connection of storage system Minimize latency – connect as memory devices

Flash Controllers


CPU

Flash **Modules**


New Hierarchy of Storage with Solid State

Interfaces & Storage Network - Evolution

- Storage device connections –
 PCle to controller
 - More offering by mid-year
 - Competitive by year end
- Storage system connection to server
 - □ Initially direct connect for PCIe
 - □ 2-3 years for battleground to settle – RDMA over Fabric
- Continuation of storage vs general purpose network

New App, New Use, New Architectures

- Performance lends itself to new approaches for current and new applications
- Longevity changes the economics of access and management
- Still absolute need for shared storage

Service Delivery & Cloud

We've been here before

IT Shift

Efficiency

Cost Management SLA Operations

Service Delivery

Competitive Edge New Business Models New Services

The Tipping Point for Service Delivery / Cloud Architectures

- More than half expect to devote 50% or more of their IT budgets to cloud
 - Hardware, software, and professional services for "build-your-own" private cloud
 - Operational costs for public cloud subscriptions
- Workloads cross all categories
 - Finance and Accounting systems
 - Customer Relationship Management
 - Proprietary Applications
 - Mobile, Social and Analytics inclusion

Public Cloud Adoption & Leaders

85-90% adoption rate among enterprises

Leaders:

- AWS
- MS Azure
- Google Cloud
- IBM SoftLayer

Private Cloud Adoption & Leaders

Adoption rate of 70-75% and growing

"Cloud" Software Players

- VMware vSphere
- OpenStack
- VMware vCloud Suite
- Bare Metal Cloud

Google as Hyper-scale Model

- Lights out data centers in different regions/countries
- Job types
 - Services (25% of workload) - Usually user facing and latency sensitive
 - Batch (75% of workload) Never user facing and throughput sensitive
 - Hadoop and Big Table
 - Both run on the same physical infrastructure
- 60% CPU utilization, 50% memory utilization.

- Failure mode: A 2000 machine service sees ten crashes per day but there is no outage from the perspective of the user
 - Replaces broken things periodically
- What's hard here?
 - Building, deploying, and versioning software over time (apps, tools, automation layers)
 - Replicating system deployments to the greatest extent possible
 - Both are labor intensive

Two Modes of the Data Center

Efficiency

Traditional IT

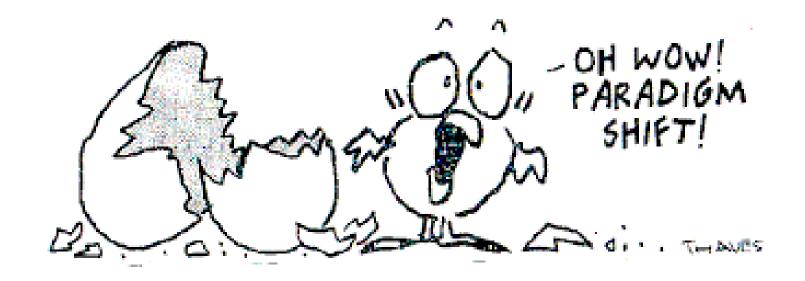
- □ Server
- Network
- □ Storage
- □ IT Managed
- □ Self Contained
- □ Primarily ScaleUp

Service Delivery

New Architectures

- □ Self Service / Client
 - Managed
- ☐ On Off Premise
- ☐ Cloud Native App Tools
- □ Scale Out Elasticity
- ☐ Resource Pooling
- Software Based
- ☐ Ability to manage failures

Private Cloud – Presumed Outcomes


- Lower the cost of VM environment, on and off premise
- Build in-house AWS-like capability to lure business user groups back to central IT
- Improved business agility and productivity
- Infrastructure cost savings
- Improved security and compliance
- □ 5-10% time savings for IT management and support

2016 Data Storage Innovation Conference. © Evaluator Group, Inc.. All Rights Reserved.

IT's Domain & Management

Traditional IT Environments

> Independent Departments

> **SMB Environments**

> > Remote Offices

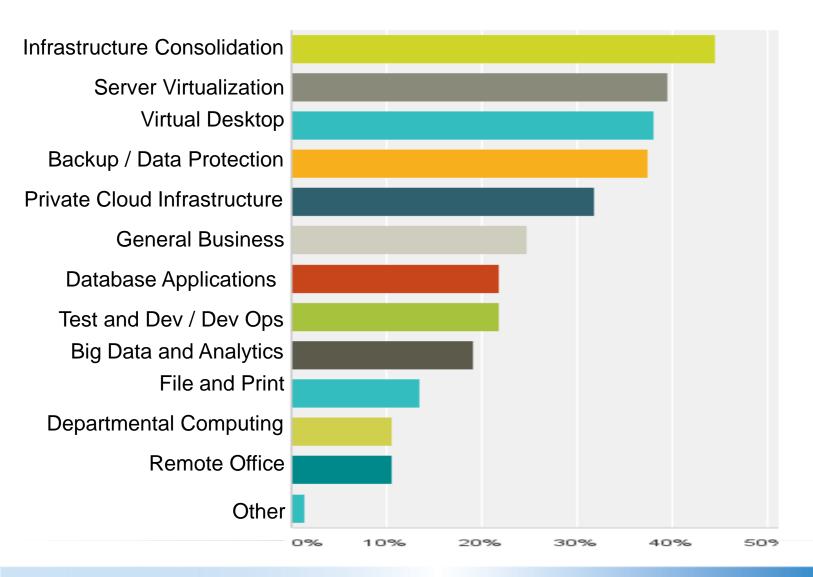
Hyperconverged & Converged

Cloud Systems with Open Storage Platforms

> Private / Hybrid Cloud

Specific Usage Solutions

Build it Yourself or


Public Service Provider

Integrated Systems

Hyperconverged Study, Joint Study, 2016

Private Cloud Choices, Options & Risks

- External Private Managed Cloud
 - Contract
 - Locations
- Open Source,
 OpenStack
 - People costs
 - Management
 - Risk

- Hyperconverged
 - □ Scale?
 - Lock in
- Converged
 - Cost and lock in
- Vendor SupportedSoftware Defined
 - People Costs
 - Risks

On and Off Premise Cloud Challenges

- Interoperability/integration challenges
- Cost of changing from current system
- OpenSource or Not?
- Which cloud model (public/private/hybrid) fits best for the business use case or application? – leads to multi cloud but creates complexity
- Security at the CSP and within the interconnecting network
- Differences in CSP business models; cloud products, services, support, and security practices
- Understanding that you can't outsource risk i.e risk of data loss/downtime/failure always rests with the enterprise
- Fear of "lock-in" when the wrong choice is made or business needs change
- Cost of cloud services
- Performance limitations
- Network bandwidth limitations

Data Protection

Expansion of Data Protection

- Greater capacity mostly with unstructured data
 - With current practices:
 - More target systems / infrastructure / cost
 - More operations staff / processes / cost
 - More time spent on protection
 - Differences in value of data
 - Impacted with more data and defined values
 - Typically, only business owner can define or understand
 - Differences in activity of data

Expansion of Data Protection

- Includes maintaining integrity of data
 - Assurances
- Often includes security
 - Control of access
 - Log of access
- Access Availability

Changes in Protection Technology – Self Protecting

- Beyond the ability to make a snapshot or clone copy
- Storage system makes protected copies
 - Directed from application
- Replicated copies with versioning
 - Generally seen in object storage systems
 - Matter of scale

Changes in Protection Technology Integrity

- Embedded integrity checks with data
- Continuous background verification with correction

Changes: Direct Backup from Storage

- Application directed data protection
 - Agent on application server invokes backup (and restore)
 - Communication to storage system
 - Storage system moves data changed blocks from last full backup - to backup to disk system (restore from backup to disk)
 - Backup to disk system reconstitutes full image
- Backup software not the data mover
 - Managing the catalog becomes major value
 - Snapshots / changed blocks on storage network
- Control/responsibility moved to application owner

Application owner / admin triggers backup

blocks to backup

storage system

Changes for Self-Protecting Storage

- Systems with incorporated backup software
 - Makes snapshots or clone copies on remote systems
 - □ Policy controls
 - □ Coalesced snapshots similar to synthetic fulls
 - Examples today include some hyperconverged appliances with built-in backup software

Changes in Self-Tiering Storage

- Systems with incorporated file migration software
 - Majority are file or object based
 - Criteria established and data automatically moved
 - Recalls on access transparently
- Some block storage systems with ability to move data to object storage (on premises or cloud)
 - Internal to system may have internal gateway

Summary

- All sectors of IT are changing
- Efficiency and Service Delivery Drive Decisions
- Changes in technology are moving Faster then we have ever seen....

- New Skills
- New Operations
- New Risks

Thank you

Camberley@EvaluatorGroup.com @camberleyB

Service Delivery - Shifts

- Brings new, competitive capabilities to the enterprise
- Changes technology and the role of IT
- New opportunities for IT personnel