Machine Learning Based Prescriptive Analytics for Data Center Networks

Hariharan Krishnaswamy
DELL
Modern Data Center Characteristics

- Growth in scale and complexity
- Addition and removal of system components
- Changing execution environments
- Changing workloads
- Updates and upgrades
Data Center Failure Scenarios

- Network failures
- Device failures
 - Host
 - NIC Team
 - Router, Switch, Firewall
 - Storage array
- Application failures
- Traffic issues
 - Latency/Throughput issues
 - Head of line blocking
 - Microburst
Reasons for Data Center failures

- Hardware failures
 - Some piece of hardware malfunctions/break down
- Software failures
 - Software bugs
- Operating conditions
 - Exceptionally high load is offered to the system/network
 - Environmental conditions
- Operator errors
 - Cabling error, Configuration errors
What an Analytics framework help with?

- Blend and ingest a variety of structured, semi-structured and unstructured data
- Discover patterns & hidden correlations
- Detect anomalous behavior & Predict failure
- Root cause the anomalous behavior
- Suggest decision options & their implications
Types of analytics

- Descriptive
- Predictive
- Prescriptive
Descriptive & Predictive Analytics

Descriptive Analytics
- Aims to provide insight into what has happened

Predictive Analytics
- Techniques used to make predictions about future events (Statistics, Data mining, Modeling, and so forth)
- What is likely to happen in future?
 - Identify patterns/trends
 - Identify clusters
 - Detect anomalous behavior
Identifying Patterns/Trends
Characteristics of Time Series Data

- Trend over time (Ex: Gradual increase/decrease of activity over time)
- Seasonal trend or cycle (Ex: Traffic increases in the morning hours, peaks in the afternoon and declines late at night)
- Seasonal variability. (Ex: Application requests fluctuate wildly minute by minute during the peak hours of 4-8 pm, but at 1 am application requests hardly vary at all)

These characteristics should be accounted for by the Analytic Model
Identifying Clusters
Prescriptive Analytics

- Data mining and predictive analytics precede the prescriptive analytics.
- Prescriptive analytics provides courses of actions and suggests options to specific situations.
- Determine the best solution or outcome among various choices.
- Can continually take in new data to re-predict and re-prescribe.
- Extends beyond predictive analytics by specifying both the actions necessary to achieve predicted outcomes and the interrelated effects of each decision.
Approach to Prescriptive Analytics

DATA

MACHINE LEARNING

RULEBASE

PRESCRIPTIVE ANALYTICS
Data Sources

LOGS
- Time-Stamped
- Semi-structured
- Event Log, Trace Log, Debug Log
- Numerical data and non-numerical data

TRAPS/ALARMS
- Notification Mechanism

IPC
- Inter Process Communication Messages
Data Sources

Network Traffic Statistics
- Packet Level Statistics

System Configuration
- Config Files

System-wide data objects
- Server Specific
- Switching /Forwarding/Routing Specific
- Application Specific
- Storage Specific
THE ANALYICS ENGINE

- Data Cleansing
- Feature Extraction
- Feature Representation
- Learning Algorithm

Input Sources:
- EVENT LOG
- TRACE LOG
- DEBUG LOG
- TRAPS ALARMS
- IPC MESSAGES
- TRAFFIC STATISTICS
- CONFIG FILES
- SYSTEM-WIDE DATA OBJECTS

Output:
- ANALYTIC MODEL
Manual Data analysis - Challenges

- Data volume is huge
- Complex and time consuming
- Lack of operational context makes data ambiguous
- Blending/Correlating multiple data sources is difficult

Machine leaning based analytics are more effective !!!
Types of Machine Learning

Unsupervised learning

- The model is not provided with the correct results during the training
- Can be used to cluster the input data in classes on the basis of their statistical properties only

Supervised learning

- Training data includes both the input and the desired results
- Correct results are known and are given in input to the model during the learning process
Machine Learning Workflow

1. Logs/Alarm/Stats IPC/Config, etc
2. Data Cleansing Feature extraction
3. Feature Representation
4. Learning Algorithm
5. New Data
6. Feature extraction and Representation
7. Model
8. Anomalous Pattern Detection
Machine Learning Algorithms

- Linear Regression
- Logistic Regression
- SVM (Support Vector Machine)
- Naive Bayes
- K-Nearest Neighbors
- K-Means clustering
- Dimensionality Reduction Algorithms
Machine learning workflow

- Learn patterns on a set of training data
 - The training dataset is labeled
 - For each data set used to train the model, it is known if it corresponds to a normal execution state or anomalous

- Apply on a New Data Set
CLASSIFIER: Support Vector Machine (SVM)

- A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane
- A Supervised learning approach
- Given labeled training data the algorithm outputs an optimal hyperplane which categorizes new Data Sets into appropriate class
Support Vector Machine (SVM)

- SVM uses linear models to implement nonlinear class boundaries.
- SVM transforms the input space using a nonlinear mapping into a new space (F feature space)
- Then a linear model constructed in the new space can represent a nonlinear decision boundary in the original space
- If the Dataset is linearly separable. The maximum margin hyperplane is the one that gives the greatest separation between the classes
Advantages & Disadvantages of SVM

Advantages
 Produce very accurate classifiers
 Less overfitting, robust to noise

Disadvantages
 SVM is a binary classifier. To do a multi-class classification, pair-wise classifications can be used (one class against all others, for all classes)
 Computationally expensive
Model Development Phase

- Certain sequence of Time Series Message data are precursors to certain type of failure
- Time Series Message data are transformed into a multi dimensional vector space representation
- During training phase, the system learns the mapping: \(X \rightarrow Y \), where \(x \in X \) is some system state and \(y \in Y \) is a class label (Normal / Anomalous for example) Model is developed during training phase
Deployment Phase

- In deployment phase, new data is run through the model to detect anomalous condition
- Fault isolation follows Anomalous Condition Detection
- Root cause together with Rule Base yield mitigation options and their implications
ANOMALOUS BEHAVIOR

FAULT ISOLATION / ROOT CAUSE

RULE BASE

MITIGATION OPTION-X & IMPLICATION

MITIGATION OPTION-Y & IMPLICATION

MITIGATION OPTION-Z & IMPLICATION

PRESCRIPTIVE ANALYTICS WORKFLOW
RULEBASE

- TRIGGERS
- POLICIES
- OBJECTS
Applications

- Anomaly Prediction & Proactively Avoiding
 - Gain insight into the root causes & mitigation of the Anomaly
- Assessment of the impact of a new application
- Long-term trend forecasting
- Capacity Provisioning
 - Memory/processing power to a server
 - Packet buffers of the network switch
 - Storage array upgrades
THANK YOU