

Innovation in Storage Products, Services, and Solutions

June 13-15, 2016 | Marriott San Mateo | San Mateo, CA

New Fresh Storage Approach for New IT Challenges

Laurent Denel – Philippe Nicolas OpenIO

- Company profile and background
- Business and Users needs
- OpenIO approach
- **Competition**
- Conclusion

Company profile and background

Project started in 2006, Company launched in June 2015

OPEN

- Privately held
- **27** people

SNIA

- □ Lille (FR), San Francisco, Montreal, Tokyo
- 50 millions end-users (Email Storage)

openstack

IT Challenges Impact Business

Explosion of Data Volume

IT Infrastructure Cost

\$ \$ \$

Complexity – Silos

The Compute and Storage dilemma

Silos of Independent Compute and Storage resources

Over-provision to keep up with SLA and QoS

Explosion of Costs and Complexity

OpenIO's Answer

OpenIO transforms a rack of x86 servers into a large storage and compute pool

OpenIO Democratizes Large Data Platform

Internet Giant have initiated the wave and proven the technology

Same model "On-Premise" Simple Elastic Flexible Cost effective On-demand Data Storage and Compute Platform

OpenIO's Approach

O_loen ()

- Object Storage to scale and store Thousands of PBs of data, Billions of objects
- Open Source and Commodity x86 servers to reduce cost and TCO
- Build Storage with x86 servers and Run applications on same infrastructure

Crush the Stack with OpenIO

O_loen (*)

Compute + Storage running on same infrastructure

OpenIO Data Storage and Compute Platform

on a Single Platform

Hyper Scalable Storage

- Scale-out by nature with shared-nothing model to aggregate storage capacity from independent x86 servers
- Limitless storage based on open source object storage technology
- Store Thousands of PBs of data and Billions of objects

Data Replication with multiple applies

High Data Durability

multiple copies

- Erasure Coding based on Reed-Solomon
- Various topologies from 1
 Data Center to Multiple or stretched cluster across geos

Multi-copies Replication Erasure Coding based on Reed-Solomon

Protect

Replication and EC

Open Data Services to Applications

Serve open standard access methods

- Standard Object APIs to leverage natively the platform: OpenIO REST/HTTP, Amazon S3 and OpenStack Swift
- Industry File Sharing Protocols: NFS, SMB, AFP and FTP + FUSE

Compute Data "locally"

- Move and Run Applications where Data reside
- Consolidate the App Tier and the Storage Tier
- Better applications SLAs with data locality
- Flexible application support with APIs, File-based access or SDKs
- Drastic TCO Reduction

Run Application directly on storage nodes

Logical Architecture

Meta Directories

- Directories with Indirections
- Track Containers not Objects
- 2 Hops Max. to reach any Object
- Multi-Tenancy at the Account level
- Flat structure at the Container level

grid://namespace/account/container/object

Grid of nodes

- No Consistent Hashing –
 No Key Space to update –
 Never Rebalance
- Transparent Elasticity No Impact on production
- Immediate availability of new nodes for storage and compute

Conscience

- Real-time load balancing for optimal data placement
- Collects metrics from the services of each node
- Computes a score for each service
- Distributes scores to every nodes and clients
- On the fly best match making for each request

The score is computed with a configurable formula usually based on: capacity, io performance, CPU

Grid for Apps – Data Access

- Data usage at the heart of the datacenter
- A data processing framework integrated inside OpenIO's Grid
- Scale-out application back-ends can be built on the storage platform itself
- Avoid wasted resources and simplify load balancing for storage and processing

- Optimized native Object APIs
 - OpenIO, Amazon S3, OpenStack Swift
 - C, Python, Java, Go
 - Specific Application Connectors / Editions
 - Email, Video/Media and Enterprise Storage
- Command Line Interface
- SDK Soon

Easy Deployment and Management

- Full Operational Control
- Ubiquitous Management via Web GUI
- CLI available

Editions and Pricing Model

Software

- **Core \$0**
- Editions\$30k/Edition/Year
- Support
 - Standard \$0.08/actual GB/Yr
 - Premium Support \$60k/Yr
 - Platinum \$150k/Yr (premium support + All Editions)

Use Cases & Customers' Stories

- Email Storage
- Storage-as-a-Service
- Media Content Processing & Delivery
- Compute + Storage Platform
- Long-term Data Archive

What you can do in 5 minutes

Drink an espresso Stretch your body Deploy* an OpenIO cluster

* https://github.com/open-io/oio-sds

O_loen ()

Competition with Object Storage Solutions

	Open Source Object Storage	Commercial Object Storage	OpenIO	
HW Agnostic	Mostly	Mostly if SW, Absolutely not if Appliance	Any mixed HW	
Open Source	Yes	No by definition	Yes	
TCO	\$	\$\$\$	\$	
Scalability	Webscale	Webscale	Webscale	
Compute + Storage	No just Storage	No just Storage	Yes (Grid for Apps)	
Data Access Methods	Objects APIs, Block GW	Objects APIs, some offer file access or partner w/ GW vendor	Objects APIs, File sharing protocols and Editions (Mail, Video)	
Data Protection	Replication and EC	Replication and EC	Replication and EC	

Competition with Data Center Platforms

	Object Storage	Big Data Hadoop	Hyper- Converged	OpenIO
HW Agnostic	Mostly	Mostly	Appliance based, HW restrictions	Any mixed HW
Compute + Storage	Storage only	Yes but dedicated	Yes but limited	Yes (Grid for Apps)
Open Source	Only 4: OpenIO, Minio, Ceph and Swift	Yes	Mostly Commercial	Yes
ТСО	\$\$	\$\$	\$\$\$	\$
Webscale	Yes	Yes at Internet giant sites	No	Yes

OpenIO Key Takeaways

Conscience

Grid for Apps

Webscale

CRUSH THE STACK

More info on openio.io

Innovation in Storage Products, Services, and Solutions

June 13-15, 2016 | Marriott San Mateo | San Mateo, CA

New Fresh Storage Approach for New IT Challenges

Laurent Denel – Philippe Nicolas OpenIO