

The Magic and Mystery of In-Memory Apps

- The Use In Memory Applications?
- Evolution towards & Role of In-Memory Computing
- Role of Storage in In-memory solutions
- Customer Trends
- Emerging Technologies & Some Predictions
- Summary

Magic and In-Memory Applications

Shaun Walsh - Marketeer

ARTHUR C. CLARKE

The Evolution of Storage Tiers

NVM will Accelerate Both Meta-Data & Application Data

NVDIMM Acceleration Segments

G2IV

NVM-DIMM – fills growing DRAM-NAND gap

- In Memory Applications are driving a new class of Storage Class Memory (SMC)
- Latency and persistence are as important as absolute bandwidth
- Byte and Block address flexibility is vital to scaling In-Memory Applications (IMA)

Source: Objective Analysis, 2015

The Future of Business Intelligence

Bandwidth & Capacity

- Old performance was data rates (GB/s) & capacity (TB)
- Store Everything, Sort Later
- Higher Cost, Slow Decisions

Latency & Persistence

- Real-Time is Business Critical
- Major Players Driving NMV
- Store the Vital & Analyze now

Latency and Persistence are the new value currency for real-time applications & storage

Procter & Gamble - Real-Time Reporting & Business Decisions

400%

Increase in decision support systems performance

35,000

Retail, supply chain and business users supported

55%

Reduced database from 36TB to 16TB all in memory

P&G achieved faster, more reliable reporting and analytics

https://hana.sap.com/abouthana/customer-stories/pg.html

© 2015 G2M COMMUNICATIONS. All rights reserved.

McLaren Group – Faster Formula 1

Faster and more consistent lap times

- Improved down force for better grip
- Real-time telemetric analysis
- More World Championships

Addren

The Art and Science of In Memory Applications

Taufik Ma Industry Insight

Evolution of Databases & Analytics

© 2015 G2M COMMUNICATIONS. All rights reserved.

Ongoing Evolution & Specialization...

Ongoing Evolution & Specialization...

	Customer Profiles (G2M Survey)					
	\$500M+ Retail	\$500M+ Pharma	\$1B+ Manufacturing	\$1B+ Pharma	\$1B+ SaaS	\$250M+ Healthcare
Hadoop	Yes	Yes	Yes	Yes	Yes	Yes
MongoDB	Yes	No plans		Yes	Yes	No plans
Spark	Yes	No plans	Considering	Yes, in 6 months	Yes	Yes, in 6 months
SAP HANA	No plans	Yes	Considering	Yes	No plans	Considering
Microsoft Hekaton	No plans	No plans	Considering	Yes, in 6 months	No plans	Yes, in 12 months
memSQL	No plans	No plans	Considering	Yes, in 6 months	No plans	Yes, in 12+ months
Oracle Exalytics	No plans	No plans	Yes	Yes	No plans	Yes, in 12+ months

"Specialized Tools for Specific Needs" (Or "Too Many Data Islands"?)

Multiple In-Memory Applications within a Customer

How many in-memory applications do you (or will you) run?

Key Enabler of In-Memory Computing: Today's Technologies

	Time to get data	
CPU L1 cache	0.001 usec	
DRAM	0.01 usec	SSD
NAND	100 usec	
HDD	10,000 usec	

DRAM = getting food from the fridge (10's of seconds)

If I complete 50 operations in

50 seconds, then have to wait

On a human scale...

for data...

NAND = taking the day off

HDDs = hiking the Pacific Coast Trail (months)

Storage	Time to get data	Price / GB	Cost for 100TB	# 2U Servers Req'd to Hold 100TB*
DRAM	0.01 usec	\$5.60 32G DIMM for \$179 ea, Samsung Registered DDR4, M393A4K40BB0-CPB0	\$560,000 3125 x 32G DIMMs	130
NAND	100 usec	\$0.35 2.5" 1TB SSD, \$350 ea, Intel 540S	\$35,000 100 x 2.5" 1TB SSD	5
HDD	10,000 usec	\$0.03 3.5" 4TB SATA HDD for \$120 ea, Seagate ST4000DM000	\$3,000 25 x 3.5" 4TB SATA HDD	2-3

Location of Data & Tasks

No such thing as 100% In-Memory

Customer In-Memory Computing Trends (based on G2M survey)

SIZE

Cluster sizes similar to big data solutions

- ½ respondents > 500 servers, 1/3 at >50
- o And not just for Spark

With datasets that fit available DRAM capacity 1/3 at >100TB, 1/3 at >10TB

GROWTH

~Half with 10-20%+/yr dataset growth

Majority use/want tier-ing when dataset > DRAM

Only minority would rely on scaleout only

Mixed on whether tier-ing should be transparent or not

Some want it transparent to developer; Rest want developer to have control via policy

EFFICIENCY

 ~Half believe "my storage capacity forces me to have more compute capacity then I need"

 Majority have or have plans for consolidated data silos

OLTP+IMDB,
 Spark+Hadoop,
 NoSQL+Hadoop

Emerging Technologies: High-speed Fabrics & Disaggregated Storage

- Data Center Ethernet speeds ramping faster than drive speeds: 10/25/40/50/100G
- RDMA-over-Ethernet technologies
- Multi-host PCIe fabrics emerging (e.g. OCP Lightning) albeit w/ less scalability

- Ethernet or PCIe based fabric
- DAS-like performance Local or SAN
- Map any drive to any host
- Scale each storage tier separately from compute
- Early proof points: EMC DSSD, SanDisk InfiniFlash, DriveScale

Emerging Technologies: Storage Class Memory

Storage	Persist- ence	Time to access data	Price / GB	Cost for 100TB	# 2U Servers Req'd to Hold 100TB*
DRAM	Ν	10ns+	\$5.60	\$560,000 3125 x 32G DIMMs	130
NV-DIMM -N	Y	10ns+	\$10+ If 2X+ DRAM	\$1,000,000+	260 16G NVDIMM, supercap
3DXP DIMM		100ns Rd 500ns Wr	\$2+ If 1/3+ DRAM	\$190,000+	~50 assuming 96 or 128GB DIMMs
NAND	Y	100 usec	\$0.35 2.5" 1TB SSD, \$350 ea, Intel 540S	\$35,000 100 x 2.5" 1TB SSD	5
HDD	Y	10,000 usec	\$0.03 3.5" 4TB SATA HDD for \$120 ea, Seagate ST4000DM000	\$3,000 25 x 3.5" 4TB SATA HDD	2-3

* Assuming 24 DIMM slots, 24x 2.5" drives or 12x 3.5" drives

24

 $\ensuremath{\textcircled{\sc 0}}$ 2015 G2M COMMUNICATIONS. All rights reserved.

In-Memory Computing Predictions / Trends

1. 3DXP DIMMs used for "Jumbo Memory" – value in lower \$/GB vs DRAM, not persistence

- Mix of 3DXP & DRAM DIMMs in server nodes
- Tier-ing will be tuned to accommodate slower writes & reads
- Spark, In-mem Hadoop, MemSQL, Hana, etc
- NV-DIMM -P might have similar adoption but predictable latency is a concern

2. Increasing use of NVMe SSDs as "Far Memory" – as next tier (below DRAM/3DXP)

- Priority on \$/TB, not persistence. Resiliency still via Lineage, logs, etc
- Remove "last-inch" of latency via BLKB (block-layer/kernel bypass) stacks (e.g. EMC libflood, SPDK)
- Implemented as a fabric-disaggregated cluster to enable efficiency & independent scalability
- Longer-term, HW-based paging of near-memory to far-memory

3. Use of "Persistent Memory" for In-Mem computing will evolve

- For 3DXP & NV-DIMM -N
- Industry progress on pmem file systems (Linux, Windows)
- Does persistence replace or complement lineage/logs?
- Need low latency replication across nodes (PMoF)

- In-memory solutions growing in adoption driven by real-time analytics
- Co-existence of structured (e.g. Hana) and unstructured frameworks (e.g. Spark)
- Confluence of big-data & real-time analytics drives increasing adoption of tier-ing
- Newer technologies on horizon will continue to create disruptions to in-memory computing architectures

