

Innovation in Storage Products, Services, and Solutions

June 13-15, 2016

Marriott San Mateo

San Mateo, CA

Increasing SSD Performance and Lifetime with Multi-stream Technology

Changho Choi, PhD Principal Engineer

Memory Solutions Lab.
Samsung Semiconductor, Inc.
Samsung Electronics, Ltd.

Disclaimer

This presentation is intended to provide information concerning SSD technology. We do our best to make sure that information presented is accurate and fully up-to-date. However, the presentation may be subject to technical inaccuracies, information that is not up-to-date or typographical errors. As a consequence, Samsung does not in any way guarantee the accuracy or completeness of information provided on this presentation. Samsung reserves the right to make improvements, corrections and/or changes to this presentation at any time.

The information in this presentation or accompanying oral statements may include forward-looking statements. These forward-looking statements include all matters that are not historical facts, statements regarding the Samsung Electronics' intentions, beliefs or current expectations concerning, among other things, market prospects, growth, strategies, and the industry in which Samsung operates. By their nature, forward-looking statements involve risks and uncertainties, because they relate to events and depend on circumstances that may or may not occur in the future. Samsung cautions you that forward looking statements are not guarantees of future performance and that the actual developments of Samsung, the market, or industry in which Samsung operates may differ materially from those made or suggested by the forward-looking statements contained in this presentation or in the accompanying oral statements. In addition, even if the information contained herein or the oral statements are shown to be accurate, those developments may not be indicative developments in future periods. The information is provided as a general understanding and not directly representing any product.

Agenda

- NAND flash characteristics
- Multi-stream
 - Multi-stream concept
 - Multi-stream system architecture
 - Multi-stream operation
- Performance benefit
- Stadards
- Summary
- □ Q&A

NAND Flash Characteristics

- Operation
 - Read/Program/Erase
- Operation unit
 - Read/Program: Page
 - Erase: block (= multiple pages)
- Out-of-place update
 - In-place update(=overwrite) NOT allowed
 - Invalidate overwritten data
 - Page MUST be erased before programming(writes)
 - □ Program/Erase (P/E) cycles
 - Need garbage collection operation

Efficient data placement increases performance with reduced garbage collection overhead

4

NAND Flash Characteristics (Cont'd)

Limited number of Program/Erase cycles

Efficient data placement increases lifetime of SSD(endurance)

Multi-stream

- □ Provide better endurance, improved performance, and consistent latency
 - Allow host to associate each write operation with a stream
 - All data associated with a stream is expected to be invalidated at the same time (e.g., updated, trimmed, unmapped, deallocated)
 - Align NAND block allocation based on application data characteristics(e.g., update frequency)

Multi-stream Operation

Mapping data with different update frequency to different streams

Operation Example

- Efficient data placement with multi-stream
 - Reduce GC overheads -> better performance and lifetime!

For effective multi-streaming, proper mapping of data to streams is important!

FIO Performance Measurement System

- Hardware
 - Quad Core Intel i7-4790 CPU 3.60GHz
 - 16GB memory
- Software
 - Ubuntu 14.04 LTS, v4.0.3 Kernel with multi-stream patch
 - FIO 2.2.5 with multi-stream patch
- Device
 - Multi-stream enabled NVMe SSD

Performance Measurement Configuration

- □ Four sequential writes jobs 1+ random read job
 - Different data lifetime: 1x, 10x, 33x, 55x
- Precondition
 - 2 hours with four-write jobs

Four Streams – Read/Write(70%/30%)

Reads

Jobs: 6

Block size: 4k

Iodepth: 64

Writes

Jobs: 4

Block size: 128k

Iodepth: 1

Write Throughput

RocksDB

- Embedded NoSQL database
 - Storage directly attached application servers
 - Persistent Key-Value Store
- Optimized for fast storage (e.g., SSD)
- Uses Log Structured Merge(LSM) Tree architecture
- ☐ Server workloads

RocksDB Performance Measurement Configuration

Hardware environment

Processor/Memory Details	Operating System	SSD Details
Processor Dual Socket: Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz. Total Logical CPU: 32 Total memory: 128 GB	Distro: Ubuntu 14.04.1 LTS, Kernel: 3.19.0-11-generic with multi- stream patch Arch: x86_64	SSD: Multi-stream enabled NVMe SSD

Software

Software	Functionality	Version/Remarks
RocksDB	Persistent Embedded Key Value Store	Modified to add Multi-stream support
YCSB	Yahoo Cloud Benchmark Tool	0.1.4
SSDB-Rocks	Provides an interface to RocksDB for YCSB	1.6.6

Workload

Parameter	Value	
Read/Update Mix	50%/50%	
Pre-inserted records	370 Million	
No of Operation	1.2 Billion	
No of YCSB Threads	32	

RocksDB Architecture

Level-tiered compaction

RocksDB in Legacy SSD

Legacy SSD (same as a single stream ID case)

RocksDB with Multi-stream

Assign stream IDs according to SSTfile levels

Stream ID	Level
1	Write-Ahead Log
2	LO
3	L1
4, 5, 6	L2
7, 8, 9	L3
10,11,12	L4
13, 14	L5
No data on Level 6 due to dataset size	L6

RocksDB:

15%+ Performance and 54% Lifespan

RocksDB: 10%+ Better Average Latency

Standards

- □ SCSI/SAS: Completed in May, 2015
 - Standard spec:

http://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc4r10.pdf

- NVMe: standardization ongoing
- SATA: standardization ongoing

Summary

- With multi-stream, SSDs can be more efficiently used for
 - Consistent better performance
 - Better endurance (=better SSD lifetime)
- With multi-stream
 - FIO: more than 2x SSD lifetime in addition to the decent I/O performance enhancement
 - RocksDB: more than 50% SSD lifetime as well as more than 15% I/O performance improvement

