An Examination of User Workloads for SSDs

Eden Kim
Calypso Systems, Inc.
An Examination of User Workloads for SSDs

- Why SSD Performance Depends on the Workload
- Why We Test with Real World Workloads
- User Workload Examples:
 - Example A: Retail Store Web Portal 24 hr Capture
 - Example B: Mac OSX You Tube 20 min Capture
 - Example C: Windows 8 Home PC 20 min Capture
 - Example D: Court Room Video Surveillance 10 hr Capture
 - Example E: Anti Virus Boot Drive Scan
SSD Performance…
It’s all about the workload

Where you measure it
- Data ingress, application space, NIC packet traffic, LUN, Array or Device
- IO Streams are affected at every level of abstraction
- Metadata, data reduction, virtualization, coalescing, fragmentation, etc.

How you define it
- Workloads are comprised of many, many IO streams
- Differing Access Patterns, Data Transfer Sizes and RW mixes
- Unique Data Content and Spatial and Temporal Locality of Reference
- Different Demand Intensity (users and jobs) and the number of outstanding IOs

How you test it
- Corner Case Benchmark, Synthetic Application or Real World workloads
- Here, we examine several applications to determine what the storage actually ‘sees’
Different ways to test SSDs…
Each one has its place

Corner Case Benchmark Tests
Convenient way to provide a quick comparison
SNIA Performance Test Specification (PTS-E/C) is a good way
However, real world workloads are never a single corner case workload

Synthetic Application Workloads
Synthetic approximations of commonly used applications
Allow more finely tuned test parameters and conditions
However, application workloads differ on different systems and at different times

Real World IO Capture Workloads
Creates specific test workloads based on IO captures of real world applications
IO Streams at the Data Center Storage LUN presents what the storage actually ‘sees’
However, they change over the course of a day and no two systems are identical
Why Test with Real World Workloads?

Because we can...

- IO trace and capture tools are available to capture & characterize real world workloads
- Test tools allow the creation of real world test workloads based on these trace captures
- Real world workloads provide another dimension to evaluate storage

We need to know what our actual workloads look like

- Everyone’s deployed application workloads are unique to their hardware / software solution
- Workload definition depends on where in the IO stack the workload is captured
- Workloads change over the course of the day depending on the use case of the storage system

We want to test storage to the actual deployed workload

- It is the best way to measure YOUR workload
- Captures can confirm what IO streams actually are presented to the storage
- Create or confirm Data Center Storage Tiering strategies - see what IO traffic goes where
Real World Workload Capture

EXAMPLE A
24 Hour 2,000 outlet retail webserver portal
How many different IO Streams were observed in 24 hours?

A. 0 – 100
B. 101 – 500
C. 501 – 1,000
D. > 1,000
How many different IO Streams were observed in 24 hours?

A. 0 – 100
B. 101 – 500
C. 501 – 1,000
D. > 1,000

Quiz Answer is....

5,038!
Example A: 24 Hour 2,000 Store Webserver Portal Capture

Sample 24hr 2016-02-15

Model: Virtual HD
Volume: 214 GB
I/Os: 4,326,159
Read: 142.9 GiB
Written: 20.8 GiB

Streams threshold: 3%

Workload Streams (by frequency)

LBA Range Hits (by frequency)

RND 64K R: 16 hits in 21.8% of drive space
Processes/hits:
- System: 16
Example A: Retail Web Portal
Workload Segment Definition / Analysis

Sample 24hr 2016-02-15

Path: \LPhysicalDrive0
Model: Virtual HD
Volume: 214 GB
IOs: 4,326,159
Read: 142.9 GiB
Written: 20.6 GiB

Workload Streams (by frequency)

 Cumulative Workload

<table>
<thead>
<tr>
<th></th>
<th>Cumulative Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SQL Server: 02:00:20</td>
</tr>
<tr>
<td></td>
<td>RND 64K R</td>
</tr>
<tr>
<td></td>
<td>SEQ 0.5K W</td>
</tr>
<tr>
<td></td>
<td>RND 8K R</td>
</tr>
<tr>
<td></td>
<td>SEQ 8K R</td>
</tr>
<tr>
<td></td>
<td>RND 4K W</td>
</tr>
<tr>
<td></td>
<td>SEQ 64K R</td>
</tr>
<tr>
<td></td>
<td>RND 8K W</td>
</tr>
<tr>
<td></td>
<td>RND 4K R</td>
</tr>
<tr>
<td></td>
<td>RND 16K R</td>
</tr>
<tr>
<td></td>
<td>SEQ 4K R</td>
</tr>
</tbody>
</table>

Total IOs of 5,038 streams: 4,326,159
Selected 6 streams: 2,784,635 (64.4%)

<table>
<thead>
<tr>
<th></th>
<th>Cumulative Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Daily Operation</td>
</tr>
<tr>
<td></td>
<td>SEQ 0.5K W</td>
</tr>
<tr>
<td></td>
<td>RND 64K R</td>
</tr>
<tr>
<td></td>
<td>RND 8K R</td>
</tr>
<tr>
<td></td>
<td>SEQ 8K R</td>
</tr>
<tr>
<td></td>
<td>RND 4K W</td>
</tr>
<tr>
<td></td>
<td>RND 8K W</td>
</tr>
<tr>
<td></td>
<td>RND 4K R</td>
</tr>
<tr>
<td></td>
<td>RND 16K R</td>
</tr>
<tr>
<td></td>
<td>SEQ 4K R</td>
</tr>
<tr>
<td></td>
<td>RND 32K R</td>
</tr>
</tbody>
</table>

Total IOs of 4,601 streams: 1,896,820
Selected 6 streams: 1,251,852 (66.6%)

<table>
<thead>
<tr>
<th></th>
<th>Cumulative Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Closing</td>
</tr>
<tr>
<td></td>
<td>RND 64K R</td>
</tr>
<tr>
<td></td>
<td>RND 8K R</td>
</tr>
<tr>
<td></td>
<td>SEQ 8K R</td>
</tr>
<tr>
<td></td>
<td>SEQ 0.5K W</td>
</tr>
<tr>
<td></td>
<td>SEQ 512K R</td>
</tr>
<tr>
<td></td>
<td>RND 16K R</td>
</tr>
<tr>
<td></td>
<td>RND 24K R</td>
</tr>
<tr>
<td></td>
<td>RND 32K R</td>
</tr>
<tr>
<td></td>
<td>RND 64K R</td>
</tr>
</tbody>
</table>

Total IOs of 1,174 streams: 888,409
Selected 4 streams: 610,837 (68.7%)
Example A: Retail Web Portal

SQL Server over 24 Hours
Real World Workload Capture

EXAMPLE B
Mac OSX You Tube 20 min Video
Example B1: Mac OSX You Tube – Block IO

Mac OSX - You Tube Video 20 min - Block IO Capture

Model: APPLE SSD SM0512F
Volume: 500 GB
IOs: 26,792
Read: 0.6 GiB
Written: 0.1 GiB

Streams threshold: 3%

Workload Streams (by frequency)

LBA Range Hits (by frequency)

- RND 4K W: 24 hits in 5 ± 1% of drive space
- Processes/hits: kernel_task: 24

2016 Data Storage Innovation Conference. © Calypso Systems, Inc. All Rights Reserved.
Example B2:
Mac OSX You Tube – File System

Mac OSX - You Tube Video 20 min - File System Capture

- **Volume:** 500 GB
- **Read:** 0.5 GiB
- **Written:** 0.1 GiB

Total I/Os of 1,105 streams: 60,993
Selected 6 streams: 46,994 (76.9%)
Real World Workload Capture

EXAMPLE C
Windows 8 Home Computer 20 min activity
Example C: Home PC – Block IO 10 min Capture

Sample Capture: Home Computer

Workload Streams (by frequency) for 17 selected processes

LBA Range Hits (by frequency) for 17 selected processes

Cumulative Workload

Total IOs of 502 streams: 26,269
Selected 5 streams: 18,171 (69.2%)

Total IOs of 52 streams: 778
Selected 5 streams: 613 (78.8%)

Total IOs of 24 streams: 486
Selected 3 streams: 421 (86.6%)
Real World Workload Capture

EXAMPLE D
Court Room Video Surveillance Cameras
Example D:
Court Room Video Surveillance – 10 hr Capture

Court Room Video Surveillance

Model: ST31500341AS
Volume: 1,397 GB
IOPS: 701,232
Read: 0.1 GiB
Written: 101.9 GiB

Streams threshold: 1%

Total I/Os of 2,926 streams: 701,232
Selected 5 streams: 136,574 (19.3%)
Real World Workload Capture

EXAMPLE E
PC Anti Virus Scan of HDD
Example E: Anti Virus Scan – PC HDD

Anti Virus Scan

Model: ???
Volume: 60 GB
IOs: 967,743
Read: 3.5 GB
Written: 46.7 GB

Streams threshold: 3%

Workload Streams (by frequency)

LBA Range Hits (by frequency)

SEQ 64K W: 3,775 hits in 84% of drive space
Processes/hits:
 avg.exe: 3,775
Take-Aways

- SSD Performance Depends on the SSD Workload
- IO Streams Change as they Traverse the SW Stack
- IOProfiler Captures IO Streams at the Block IO level
- See What IOs Actually get to the SSD Storage
- Be Sure you Buy the ‘Right Amount of Performance’
Understand Your SSD Workloads

To Analyze the Workloads Presented, Go to

TestMyWorkload.com

Capture & Analyze Your SSD
Real World Workloads Today!
For more information, contact Calypso Systems, Inc.

info@calypsotesters.com www.calypsotesters.com