Application Advantages of NVMe over Fabrics
RDMA and Fibre Channel

Brandon Hoff
Broadcom Limited

Tuesday, June 14 2016
10:55 – 11:35 a.m.
Agenda

- Applications that have a ‘need for speed’
- The Benefits of NVMe
- The need for NVMe Fabrics
- NVMf
 - The Standard
 - Code Submission to the community
- Broadcom Reference Hardware Architecture for SDS
- Storage Array Requirements
- NVMe over RDMA and NVMe over Fibre Channel
- Closing
Testing the New Paradigm
SQL TPC-H Test Results by Demartek

- Performance hungry applications can consume all the performance that we can give them
- The race is on to improve performance and reduce latency

With 4x the performance TPC-H takes ¼ of the time!

Query Time (in seconds)

Source: Demartek, February 2016

http://www.demartek.com/Demartek_Emulex_LPe32000_Gen6_FC_Evaluation_2016-03.html

In an All-Flash World – Performance Matters!
The NVMe Opportunity

- The industry is very focused on improving storage performance with NVMe
- The bottleneck is moving from the storage device to the software & network stack
 - Low NVMe latencies expose new bottlenecks
- Next step is to scale the number of devices beyond a rack

Storage latencies are dropping by orders of magnitude
NVMf Evolution

- NVMe 10s of SSDs
- PCIe Rack Scale 100s of SSDs
- NVMe over Fabrics 1000s of SSDs
- Next Gen NVM

Scale (# of Devices)

Latency (µs)

2016

1000 SSDs

20us
NVMe for Fabrics
NVM Express, Inc.

- Industry-wide NVMe community defining NVMe over Fabric
- Dozens of participating companies
- Working group actively reviewing final items in draft spec now
- NVMe Fabrics Linux Driver working group active
NVMe over Fabrics

- Why is NVMe Fabrics important?
 - Simple, low-latency transport leveraging NVMe
 - Layered architecture for scale-out over any fabric

- When is it happening?
 - NVMe over Fabrics Specification Released June 6th 2016
 - NVMe fabrics software stack contributed to the community
 - Multiple prototypes now, early releases in 2016

- What can we build with it?
 - Fabric-connected “JBOD” of NVMe devices
 - Low-latency NVMe end-to-end storage servers
 - Fastest all-Flash Arrays and NG-NVM storage arrays
NVMe over Fabrics Stack Development

- Host and Target source code in a public repository on gitlab.com
- Developers create git patches and email them to the WG reflector
- WG members approve and/or comment on the new patches
- Maintainer integrates approved patches into the for-next branch

- Multiple members actively submitting patches
 - Adding new functionality based on latest fabrics TP specification
 - Fixing bugs that have been identified during testing
 - Several rebases to latest upstream Linux kernel functionality
Linux Fabric Driver Architecture

- Initiator and target software stacks for NVMe over Fabrics
 - RDMA and Fibre Channel supported, initially
- Standardized Latency Test
 - Determine latency to access an NVMe PCIe SSD remotely vs locally
Broadcom SDS Reference Platform

Enterprise Proven: Performance and 74% lower TCO for NVMe Drives

• Broadcom reference design
 – Broadcom Dual-Mode Fibre Channel (NVMe and SCSI)
 – Broadcom 25G RoCE NIC
 – RAID/JBOD – Broadcom SAS/SATA/NVMe
 – Broadcom DCSG PCIe switching
 – Broadcom DSD NVMe ASICs (on the NVMe SSD)

• Hardware Platform for
 – Traditional customers – Build out and test performance benefits
 – Ready to go Hardware Platform for Startups – Predefined and configured hardware system

• High Performance Architecture
 – High performance data protection
 – Separate control and data paths
 – NVMe technology for low latency
Storage Array Performance Considerations

<table>
<thead>
<tr>
<th>Standard Storage Arrays</th>
<th>NVMe Storage Arrays</th>
<th>NVMe JBOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>~200us Latency</td>
<td>~100us Latency</td>
<td>~40us Latency</td>
</tr>
<tr>
<td>Full Featured</td>
<td>Tradeoff enterprise features for performance</td>
<td>No Enterprise Features</td>
</tr>
<tr>
<td>Applications</td>
<td></td>
<td>Applications</td>
</tr>
<tr>
<td>Trading, Financial, etc.</td>
<td></td>
<td>Ceph, Hadoop, etc.</td>
</tr>
</tbody>
</table>

Different applications will require different storage architectures.
NVMe over RDMA (RoCE) Vs. NVMe over Fibre Channel

<table>
<thead>
<tr>
<th></th>
<th>NVMe over RDMA (RoCE)</th>
<th>NVMe over FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput</td>
<td>1x at 25G, 4x at 100G</td>
<td>1x at 32G, 4x at 128G</td>
</tr>
<tr>
<td>Switch QoS</td>
<td>PFC</td>
<td>Credit based flow control</td>
</tr>
<tr>
<td>Kernel Bypass</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Low Latency</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CPU Overhead</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Converged Ethernet</td>
<td>Yes</td>
<td>FCoE</td>
</tr>
<tr>
<td>Security</td>
<td>New</td>
<td>Proven</td>
</tr>
</tbody>
</table>

Different applications will require different network architectures.
Next Steps

- Understand the importance of latency in your applications
- Choose the network that fits your business needs
 - The Performance is identical between them
- Leverage the reference platforms for storage software development
- Applications will consume all of the performance we can give them.