Benefits of 25, 40, and 50GbE Networks for Ceph and Hyper-Converged Infrastructure

John F. Kim
Mellanox Technologies
Major storage technology transitions
- Software Defined Storage
- SSDs replacing hard disk drives
- Hyper-converged and Cloud

All require faster networks, and efficient transport
- More east-west traffic
- Faster storage needs faster networks
- Higher bandwidth needs better offloads
Fibre Channel in a Slow Decline

- FC being outgrown
 - Ethernet Block & NAS
 - Distributed Storage
 - Big Data
 - Hyper-converged
 - 4K video editing
- FC-SANs do not go away
 - But they don’t grow
 - New storage is Ethernet
25/50/100 GbE Rapid Growth Projected

- 25GbE to grow rapidly
 - Fastest ramp in history
 - Passes 40GbE in 2019
- 50 & 100GbE Also Grow
 - Cloud/Web 2.0 customers
 - Large enterprises

Crehan Research: Q2'15 Server Class Adapter Market Share (August 2015), Long Range Forecast – Server-class Adapters & LOM (July 2015), Adapter forecast includes LOM;
Ethernet Growth in 25Gb/s & Faster

- By 2020, Over 50% of market
 - Fastest ramp in history
 - Passes 40GbE in 2019
- 50 & 100GbE Also Grow
 - Cloud/Web 2.0 customers
 - Large enterprises

High Speed Adapter Market Forecast 2020 ($1.8B)

- 25/40/50/100 GbE speeds will make up 57% of high-speed adapter sales by 2020

Crehan Research: Q3’15 Server Class Adapter Market Share (Nov 2015), Long Range Forecast – Server-class Adapters & LOM (Jan 2016), Adapter forecast includes LOM;
25 Is the New 10; 50 is the new 40

- 25GbE = 2.5x bandwidth
 - Only 1.5x the price
 - 40% lower cost/BW
 - Compatible with 10GbE ports
- 50GbE = 1.25x BW at same cost
 - Upgrade from 40GbE
 - 20% lower cost/BW
 - Cheaper optical cables
- 100GbE for switch links
 - 60% fewer links
- Re-use existing fiber cables!

New Ethernet Drives 25Gb/s Per Lane
More Data on the Same Links
High Speed Network Cables: Quick Definition Review

Direct Attach Copper (DAC)

- Uses pulsing electrical signals sent into shielded copper wires.
- At high data rates, wire acts like a radio antenna.
- Data signal leaves the wire and lost, so length becomes shorter.
- Longer the cable, thicker it becomes.

- Maximum length for 10/40GbE – 5m
- Maximum length for 25/100GbE – 3m

Key Benefits: Lowest Cost, zero power
Typical usage: Inside rack, 0.5-3m reach

Optical Transceiver

- Converts electrical signals to optical.
- Transmits blinking laser light over tiny glass optical fibers.

- 2 fiber types:
 - Multi-mode – up to 100m
 - Single-mode – up to 2Km

- Applies to both 10G/40G and 25G/100G
- More expensive than DAC copper

Key Benefits: Long reaches
Uses: Linking switches up to 2Km.

Active Optical Cable

- 2 Transceivers with optical fiber glued in.
 + Lowest Cost Optical for <200m

2016 Data Storage Innovation Conference. © Insert Your Company Name. All Rights Reserved.
Ceph
Ceph Performance Testing

- Ceph is a scale-out system
 - Two logical networks
 - 3-way replication or erasure-coding
 - Metadata, monitoring, and client traffic
 - Rebuild or rebalance traffic

- Faster network = faster performance
 - Higher bandwidth and lower latency
 - Increases small block IOPS
 - Increases large block throughput

Mellanox Testing 10/25/40/50 GbE
Ceph Performance Testing vs. 10GbE

- 4 Ceph OSD servers
- 3 NVMe SSDs each
- ConnectX-4 Lx
- Set network to 10, 25, 40, and 50GbE speeds

- Aggregate performance of 4 Ceph servers
 - 25GbE: 67Gb/s & 242K IOPS (vs. 35Gb/s & 130K IOPS at 10GbE)
 - 25GbE has 92% more throughput than 10GbE
 - 25GbE has 86% more IOPS than 10GbE
Supermicro Testing: 2x10GbE vs. 40GbE

- More disks = more MB/s per server, less/OSD
- More flash is faster (usually)
- All-flash 2-SSDs node faster than 36 HDDs

40GbE Advantages:
- Up to 2x read throughput per server
- Up to 50% decrease in latency
- Easier than bonding multiple 10GbE links

Key Test Results:

- 13-20 Gb/s per server with Mellanox 1x40GbE
- 5.6-9.6 Gb/s per server with Intel 2x 10GbE ports
QCT & Red Hat Ceph Storage Testing

QuantaPlex T21P-4U Dual-Node
- 2 OSD nodes, 70 HDD & 4 SSD per server
- 35x 8TB HDD + 2x PCIe SSD per node
- 10GbE or Mellanox 40GbE NIC

Key 40GbE Test Results
- Up to 2700MB/s read per node (21.6Gb/s)
- Up to 7x faster reads than 10GbE
- Also faster write throughput, even when <10Gb/s

Sequential Read Throughput per Server

T21P-4U 10G+10G vs 40G

Up to 7x more throughput per OSD server with Mellanox 1x40GbE

- T21P-4U/Dual - 35xOSD+2xPCIe, 1x40G (3xRep)
- T21P-4U/Dual - 35xOSD+2xPCIe, 10Gx10G (3xRep)
Cisco Ceph Testing: 10GbE Not Enough

Cisco Test Setup
- UCS C3160 servers, Nexus 9396PX switch
- 28 or 56 6TB SAS disks; Replication or EC
- 4x10GbE per server, bonded
- (Easier if had used Mellanox 40GbE NICs)

Results with 3x Replication
- One node read: 3700 MB/s (29.6 Gb/s)
- One node write: 860 MB/s rep (6.8 Gb/s)
- 3 nodes read: 9,700 MB/s (77.6 Gb/s)
- 8 nodes read: 20,000 MB/s (160 Gb/s)
Ceph Customer Network: Monash University

- Research University
 - 67,000 students
 - 9 locations
 - 3 Ceph clusters
 - >60 nodes
 - >6PB storage
- First network:
 - 10GbE to nodes
 - 56GbE inter-switch
- Second Ceph network
 - 25GbE to nodes
 - 100GbE inter-switch
Hyper-Converged
Faster Interconnect Enables Higher ROI

Faster Networking Enables Savings in VDI Deployments over vSphere*

<table>
<thead>
<tr>
<th>Interconnect</th>
<th># Virtual Desktop per Server</th>
<th># Servers</th>
<th># Switches</th>
<th>CapEx</th>
<th>CapEx per Virtual Desktop</th>
</tr>
</thead>
<tbody>
<tr>
<td>10GbE</td>
<td>60</td>
<td>84</td>
<td>2</td>
<td>$ 540,545</td>
<td>$108</td>
</tr>
<tr>
<td>25GbE**</td>
<td>140</td>
<td>36</td>
<td>1</td>
<td>$ 279,214</td>
<td>$ 55</td>
</tr>
<tr>
<td>40GbE</td>
<td>167</td>
<td>30</td>
<td>1</td>
<td>$ 207,890</td>
<td>$ 41</td>
</tr>
</tbody>
</table>

- 50GbE, 100GbE and RoCE will enable higher efficiency
- Significant savings when running 5000 virtual desktops

* Hardware savings only (not including VMware, guest OS license) and OpEx
** Interpolation based on the 10GbE and 40GbE results

Higher Performance Interconnect Enables >2X Higher Efficiency
38x Faster Live Migration on 40GbE

vSphere 6.0:
- ESXi 6.0.0, 3073146

Compute:
- 2 x E5-2697 v3
- Guest OS: Linux
- 384GB RAM
- ConnectX-4 LX Pro 10/25/40/50GbE

Storage:
- VSAN 6.x
- 1 x PCIe 800GB SSD
- 6 x 800GB SSDs

VMware ESXi 6 All Flash vSAN vMotion [sec]

VM Migration Time [sec]

<table>
<thead>
<tr>
<th></th>
<th>10GbE</th>
<th>40GbE</th>
</tr>
</thead>
<tbody>
<tr>
<td>128GB Memory</td>
<td>3330</td>
<td>86</td>
</tr>
</tbody>
</table>

3244 Seconds Savings
Higher Efficiency with VSAN on 40GbE

- VMware VSAN
 - All-flash storage
 - vCloud Suite 6.0
- Network:
 - 40/56 GbE
 - NSX
Windows Storage on 100GbE With RDMA

- 2X better performance with RoCE
 - 2X higher bandwidth & 2X better CPU efficiency
- RoCE achieves full Flash storage bandwidth
 - Remote storage without compromises

Demo Summary: 100GbE and NVMe
A technology demonstration of things to come for Microsoft SDS...

Demo highlights:
- Storage Spaces using NVMe SSDs
- SMB3 using 100Gbps RDMA
- Over 11Gbytes/sec from one NIC port
- 1ms latency with SMB3 storage
- Less than 15% CPU utilization

Now imagine a Storage Spaces Direct solution using this kind of storage and networking.
Microsoft recently benchmarked 100Gb/s Storage Spaces Direct
- 4 Dell R730XD Servers
- Samsung NVMe Flash
- ConnectX-4 100GbE Adapters
- RoCE for RDMA

60 GByte/sec aggregate throughput
- Could transmit entire content of Wikipedia in 5 seconds

https://blogs.technet.microsoft.com/filecab/2016/05/11/s2dthroughputtp5/
Windows Storage Spaces – Faster Networks

- RoCE vs. TCP IOPS
 - 10Gb/s: +58%
 - 40Gb/s: +94%
 - 56Gb/s: +131%

- RoCE vs. TCP Latency
 - 10Gb/s: -63%
 - 40Gb/s: -51%
 - 56Gb/s: -43%

- 40GbE vs. 10GbE IOPS
 - TCP/IP: +151%
 - RoCE: +208%

- 56Gb/s vs. 40Gb/s
 - TCP/IP: None
 - RoCE: +20%
Other Performance Testing

- MapR Comparison
 - 40GbE up to 70% Better
 - HGST SSDs
- Nexenta Edge
 - 128KB random writes
 - 25GbE: 14.4Gb/s
 - 50GbE: 23 Gb/s
Thank You