

Innovation in Storage Products, Services, and Solutions

June 13-15, 2016

Marriott San Mateo

San Mateo, CA

Demonstrating NVMe Over Fabrics Performance on Ethernet Fabrics

Rob Davis
VP of Storage Technology
Mellanox

Why NVMe and NVMe over Fabrics(NVMf)

What Makes NVMe Faster

NVMe Performance

NVMe flash outperforms SAS/SATA flash

□ 2x-4x more bandwidth, 50-60% lower latency, Up to

5x more IOPS

 NVMe is optimized for flash and next-gen persistent memory(PM)

- Traditional SCSI interfaces designed for spinning disk
- NVMe bypasses unneeded layers

Random Read/Write Performance[†]

NVMf is the Logical and Historical next step

- Sharing NVMe based storage across multiple servers/CPUs
 - Better utilization: capacity, rack space, power
 - Scalability, management, fault isolation
- NVMf Standard 1.0 was completed in early June

How Does NVMf Maintain Performance

- The idea is to extend the efficiency of the local NVMe interface over a fabric
 - Ethernet or IB
 - NVMe commands and data structures are transferred end to end
- Relies on RDMA for performance
 - Bypassing TCP/IP

Why not Traditional TCP/IP Network Stack

What is RDMA

2.00

0.00

Without ROCE

ROCE

RDMA & NVMe: A Perfect Fit

Efficient Data Movement (RDMA)

Early Pre-standard Demonstrations

- □ April 2015
 - NAB Las Vegas

- 10Gb/s Reads, 8Gb/s Writes
- 2.5M Random Read 4 KB IOPs
- □ Latency ~8usec over local

Compute/Storage Disaggregation

Micron FMS 2015 Demonstration

MemBlaze Demonstrations – 40GbE/RoCE

Pre-standard Drivers Converge to V1.0

Demo	NVMe Hardware	Software / Drivers	Network
Mangstor	Mangstor	Mangstor NVMeoF	RoCE or IB
PMC Sierra	PMC	PMC NVMeoF	40Gb RoCE
HGST	HGST	HGST NVMeoF	56Gb InfiniBand
Micron	Micron	Mellanox NBDx	100Gb RoCE
Memblaze	Memblaze	Mellanox NBDx	40Gb RoCE
Samsung at FMS15	Samsung	iSER / Ceph / SMB Direct	40Gb RoCE
Intel at IDF14	Intel	Intel/Chelsio NVMeoF	40Gb iWARP
Stealth startups	Any / Intel NVMe	Startup's NVMeoF	40Gb RoCE

NVMf Standard 1.0 Community Open Source Driver Development

Working Group - Fabrics Linux Driver

Group Info

Group Chair: Bob Beauchamp, EMC

Group Email Addresses

Post message: fabrics linux driver@nvmexpress.org
Contact chair: fabrics linux driver-chair@nvmexpress.org

Mellanox

Intel

HGST

EMC

Apeiron Data

Systems

Broadcom

Corporation

Chelsio

Communications, Inc.

Excelero

Hewlett Packard

Enterprise

Kazan Networks

Kenneth Okin

Consulting

Mangstor

NetApp

Oracle America Inc.

PMC

Qlogic Corporation

Samsung

SK hynix Inc.

Early Community Driver Performance

- Topology
 - Two compute nodes
 - □ ConnectX4 25GbE RoCE
 - One storage node
 - □ ConnectX4-LX 50GbE RoCE
 - 4 X Intel NVMe device (P3700/750 series)
 - Nodes connected through switch
- BS = 4k, 16 jobs, IO depth = 64
 - 4 cores @ 50% utilization

Bandwidth	IOPS	Added latency
5.2GB/sec	1.3M	~12us

Kernel & User Based NVMf

Throughput of NVMf with polling user driver can reach ~1.0M IOPS, with only 1 CPU cores utilized

Intel NVMf IDF Shenzhen Demo

Conclusions

- □ Future Storage solutions will be able to deliver DAS storage performance over a network if:
 - NVMe SSDs new NVMe protocol eliminates
 HDD legacy bottlenecks
 - □ Fast network "Faster storage needs faster networks!"
 - NVMf with RDMA new NVMf protocol running over RDMA is within microseconds of DAS

Innovation in Storage Products, Services, and Solutions

June 13-15, 2016

Marriott San Mateo

San Mateo, CA

Thanks!

Rob Davis robd@mellanox.com