Workload Acquisition for the Enterprise Data Center

Peter Murray
Virtual Instruments
Hard Problems You’re Trying to Understand

- How to most accurately test all solid state storage arrays
- Approaches for assessing storage performance
- How to select the best methodology for YOUR application(s)
- Find proven strategies to help avoid over-spending
Application Emulation

- The best way to test all solid state arrays is to emulate real applications
- Important application stream characteristics
 - Temporal locality
 - When data is written/read
 - Spatial locality
 - Where data is written/read
 - Data content patterns
 - Random or compressible
 - Some patterns repeat more than others
- These characteristics are critical to understanding SS array performance
The Journey: How Did we Get Here?

- Storage testing was black art
- Testing programs derived from disk drive utilities
 - Did not represent actual applications
 - Could not emulate spatial temporal or spatial locality
 - Did not emulate Data Content
- Difficult to emulate the varying load on many LUNs
- Difficult or impossible to configure the metadata and structure required to emulate file-based apps
The World has Changed – Don’t Miss It

- Before flash, disk drives were the storage performance bottleneck
 - Short-stroking and other techniques helped but were inadequate
 - Data reduction rarely used because it added to transaction times

- Solid state memory technologies change this model
 - Read access time is unaffected by data location
 - Any location can now be accessed as quickly as any other
Writing to Solid State Arrays

- Solid state memory has a limited number of write cycles
- Therefore, modern solid state storage arrays avoid writing
- Write access is very different than read access
- Flash write access time is implementation dependent
 - Sequential writing may be impacted
 - Random writing can impact garbage collection
- Data reduction processing may require post-processing
 - But typically does not affect write speed
How is Flash Different?

- Addressable storage space is likely less than raw space
 - May help avoid performance issues during garbage collection
 - Other methods are available to avoid performance issues
 - Can help increase flash life
- Deduplication & compression decrease storage requirements for an app
 - More storage per nominal byte
 - But, performance may be impacted
- Advanced metadata processing & workload profiles at scale make it harder to saturate an array
 - Test at near full capacity to understand array performance
- Testing with hotspots helps model application behavior
 - Garbage collection or metadata processing may affect performance
- Software services & protocols – software runs differently on SSD than on HDD
SS Arrays Require New Storage Testing Methods

- Applications exhibit spatial and temporal locality
 - Modern solid state arrays are designed with this in mind
- Application traffic contains data content
 - Data is random or compressible
 - Data may also be de-duplicatable
 - All content types are present in most applications
- Some all solid-state storage arrays must be tested with locality
 - Data reduction is a key feature - can’t be turned off
 - Legacy testing apps cannot emulate the locality, content or content flocking present in applications
- New thinking and testing applications are mandatory!
Storage Performance

- Vendors have good stories, but don’t confuse marketing with reality
- Vendors endorse performance testing with your workloads, derived from production environments, via synthetic workloads
- Vendors and standards organizations produce benchmarks, but they are guidelines at best
- Benchmarks don’t offer configuration guidance – and don’t represent your workloads
Why Performance Testing is Important

- Which is the best technology for my needs?
- Which is the best vendor / product for my needs?
- What is the optimal configuration for my array?
- Does performance degrade with enterprise features:
 - Deduplication
 - Compression
 - Snapshots, Clones, Replication
- What are the performance limits of a potential configuration?
- How does an array behave when it reaches its performance limit?
- Does performance degrade over time?
- Which workloads are best for an AFA? A hybrid storage array?
Why Performance Testing is Important

CAUTION

THIS SIGN HAS SHARP EDGES
DO NOT TOUCH THE EDGES OF THIS SIGN

ALSO, THE BRIDGE IS OUT AHEAD
Why Performance Testing is Important

CAUTION
THIS SIGN HAS SHARP EDGES
DO NOT TOUCH THE EDGES OF THIS SIGN
ALSO, THE BRIDGE IS OUT AHEAD
Traditional Storage Testing Approaches

- Limits finding
- Functional testing
- Error Injection
- Soak testing
Storage Performance Validation
2 core methodologies

- **Workload Modeling**
 - Simulate the I/O profiles of your production environment

- **Performance Profiling**
 - Fully characterize performance of arrays under wide variety of load parameters
Performance Profiling for Vendors

Performance Profiling

- Characterization under a wide range of workload conditions
- Understand sweet spots and weaknesses of an array
- Sometimes referred to as “4 corners” or “limits” testing, but you can do much more than that
- Vendors need these tests to validate portions of a storage array
- IT customers do not generally benefit from this testing
 - Applications don’t act like performance profiles
 - Some exceptions; e.g. queue depth or outstanding commands
Performance Profiling

Iteration Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Selected Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Pattern - Read %</td>
<td>0, 20, 40, 60, 80, 100</td>
<td>X</td>
</tr>
<tr>
<td>I/O - Constant Request Size</td>
<td>4KB, 8KB, 16KB, 32KB, 64KB</td>
<td>X</td>
</tr>
<tr>
<td>Port - Tx Queue Depth (FC only)</td>
<td>1, 2, 4, 8, 16, 32, 64, 128</td>
<td>X</td>
</tr>
<tr>
<td>Load - Throughput Value</td>
<td>1MB, 5MB, 10MB</td>
<td>X</td>
</tr>
<tr>
<td>Data Reduction - Uncompressed to compressed ratio</td>
<td>2.0, 1.5</td>
<td>X</td>
</tr>
</tbody>
</table>

Number of configured iterations: 1440
Performance Profiling

Fibre channel performance

Started by admin

1:00:05:15

Last Log Record: 2015-01-26 11:38:35 AM | Success | Test Suite finished

Iteration Results

<table>
<thead>
<tr>
<th>#</th>
<th>Status</th>
<th>Duration</th>
<th>Access Pattern - Read %</th>
<th>I/O - Constant Request Size</th>
<th>Port - Tx Queue Depth (FC only)</th>
<th>Load - Throughput Value</th>
<th>Data Reduction - Uncompressed to compressed ratio</th>
<th>SCSI Throughput (average)</th>
<th>SCSI I/Os Succeeded/sec (average)</th>
<th>SCSI Average Response/Latency Time (average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Finished</td>
<td>01:01</td>
<td>0</td>
<td>4KB</td>
<td>128</td>
<td>10MB</td>
<td>1.5</td>
<td>8.3 MB/sec</td>
<td>2115.387</td>
<td>6 ms</td>
</tr>
<tr>
<td>47</td>
<td>Finished</td>
<td>01:00</td>
<td>0</td>
<td>4KB</td>
<td>128</td>
<td>10MB</td>
<td>2</td>
<td>8.0 MB/sec</td>
<td>2044.602</td>
<td>.7 ms</td>
</tr>
<tr>
<td>42</td>
<td>Finished</td>
<td>01:00</td>
<td>0</td>
<td>4KB</td>
<td>64</td>
<td>10MB</td>
<td>1.5</td>
<td>7.5 MB/sec</td>
<td>1921.051</td>
<td>.5 ms</td>
</tr>
<tr>
<td>41</td>
<td>Finished</td>
<td>01:00</td>
<td>0</td>
<td>4KB</td>
<td>64</td>
<td>10MB</td>
<td>2</td>
<td>7.2 MB/sec</td>
<td>1897.487</td>
<td>.9 ms</td>
</tr>
<tr>
<td>36</td>
<td>Finished</td>
<td>01:00</td>
<td>0</td>
<td>4KB</td>
<td>32</td>
<td>10MB</td>
<td>2</td>
<td>6.5 MB/sec</td>
<td>1663.073</td>
<td>.3 ms</td>
</tr>
<tr>
<td>288</td>
<td>Finished</td>
<td>01:00</td>
<td>20</td>
<td>4KB</td>
<td>128</td>
<td>10MB</td>
<td>1.5</td>
<td>6.5 MB/sec</td>
<td>1657.239</td>
<td>.5 ms</td>
</tr>
<tr>
<td>35</td>
<td>Finished</td>
<td>01:00</td>
<td>0</td>
<td>4KB</td>
<td>32</td>
<td>10MB</td>
<td>2</td>
<td>6.3 MB/sec</td>
<td>1612.252</td>
<td>.5 ms</td>
</tr>
<tr>
<td>282</td>
<td>Finished</td>
<td>01:00</td>
<td>20</td>
<td>4KB</td>
<td>64</td>
<td>10MB</td>
<td>1.5</td>
<td>6.2 MB/sec</td>
<td>1586.806</td>
<td>.8 ms</td>
</tr>
<tr>
<td>281</td>
<td>Finished</td>
<td>01:00</td>
<td>20</td>
<td>4KB</td>
<td>64</td>
<td>10MB</td>
<td>2</td>
<td>6.1 MB/sec</td>
<td>1554.01</td>
<td>.1 ms</td>
</tr>
<tr>
<td>287</td>
<td>Finished</td>
<td>01:01</td>
<td>20</td>
<td>4KB</td>
<td>128</td>
<td>10MB</td>
<td>2</td>
<td>6.1 MB/sec</td>
<td>1545.593</td>
<td>.7 ms</td>
</tr>
</tbody>
</table>
Workload Modeling

Performance Profiling
Fully characterize performance of arrays under wide variety of load parameters

Workload Modeling
Simulate the I/O profiles of your production environment
Workload Modeling

▸ Stresses an array using a realistic simulation of the specific production workload/s
 • For IT customers, from your current environment
 • For vendors, using customer examples or “dog food”

▸ Realism is paramount – realistic I/O profiles

▸ Packet traces offer limited utility in testing
 • Huge volume of data
 • Short Duration
 • Security concerns
Workload Modeling

Performance Comparison: NAS Vendor A vs. NAS Vendor B

Vendor A: Shallow Tree Structure (2014-03-21: 11:05:05 AM)
Vendor B: Shallow Tree Structure (2014-03-20: 12:48:12 AM)
Vendor B: Deep Tree Structure (2014-03-20: 12:45:36 AM)
Where Does Workload Modeling Come From?

- Customers ask for workload models
 - IT customers want models of their workloads
 - Vendors want “the” workload
 - Oracle, Exchange, etc.
- IT customers ask to help make better decisions about:
 - Upgrading storage hardware or software
 - Changing storage network configuration
- Vendors ask for help to:
 - Test customer examples/issues
 - Find realistic scaling limits to test app growth over time
Result: A New Modeling Method

- Cloud-based workload modeling
- Community-based workload sharing
- Workload model that can be ingested into Virtual Networks load generation
- More realistic and scalable than benchmarks
Workload Central is a free cloud-based analytics platform and community that allows you to understand analyze, create and share workloads.

Available at: www.workloadcentral.com

- Key Features:
 - Free workload analysis & creation
 - Advanced workload analytics
 - Workloads for validation, testing & benchmarking
 - Workload Library, community & discussion
Uploading Your Workload Data

The Workload Importer offers:

- Ability to upload data from any vendor or environment
- Out of the box import policies
- Analysis policies provide flexibility to define different workloads
A free downloadable, printable report and dashboard that provides:

- Workload access pattern
- Workload behavior characteristics
- Workload performance
- Workload creation
Running a Block-Based Workload Model

Workload Modeling
Simulate the I/O profiles of your production environment
1. Characterize Workload I/O

- **Per-LUN I/O:**
 - Read-Write Mix
 - Random or sequential access
 - Hot spots and hot spot drift

- **Data Content**
 - Randomness
 - Compressibility
 - Unique vs. duplicated blocks
2. Determine Data Content Patterns

- **Data content patterns**
 - Created during preconditioning

- **Data content streams**
 - Created during preconditioning
 - Replayed during testing

- **Consist of repeating and non-repeating patterns**
 - Random
 - Compressible

- **Consist of varying pattern lengths**
3. Build I/O Models

- Decide when to model
- Boot storm
- Everyday office load
- Backups
- End of period processing
 - Month, Quarter, year end
- Test primary models individually
- Test periodic models on top of everyday load
- Magnify load to test expected maximums
4. Run Workload Models

- Run most common model(s) first
 - Determine baseline performance
- Add periodic models to common model
- Combine apps if appropriate and test together
5. Test Array Features

- Test effect of MPIO
- Test effect of maintenance / other management activities
- Test at or near full capacities
- Test effect of QoS
Test in an Iterative Manner

- Run
- Analyze
- Repeat as necessary
 - Change testing to reflect business conditions
Summary

- Performance assurance
- Reduced storage costs
- Increased uptime
- Acceleration of new application deployments
Summary

- Application Testing is now mandatory
 - Black art has become repeatable
- No synthetic workload is perfect
 - But is the best approach available
 - This will only improve over time
- Customers can see:
 - How closely the model emulates apps
 - A realistic view of how an array operates
- This new model is changing storage testing
Company Overview

Global Leader in Infrastructure Performance Analytics

- Founded in 2008
- HQ in San Jose, CA
- Global 2000 Customers
- Every Major Vertical
- 44 of the Fortune 100
- Merged with Load DynamiX in April 2016