

STORAGE PERFORMANCE BENCHMARKING: PART 3 – BLOCK COMPONENTS

Ken Cantrell, NetApp Mark Rogov, EMC David Fair, SNIA ESF Chair, Intel March 8, 2016

SNIA Legal Notice

- The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted.
- Member companies and individual members may use this material in presentations and literature under the following conditions:
 - · Any slide or slides used must be reproduced in their entirety without modification
 - The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.
- Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.
- The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.

About The Speakers

Mark Rogov EMC Advisory Systems Engineer @rogovmark Dr. David Fair SNIA ESF Chair & Intel Ethernet Networking Marketing Manager

Storage Performance Benchmarking

Session 1 – Terminology and Context

Session 2 – The Slowest Component Matters Most

SLOW COMPONENT MATTERS MOST

BOTTLENECKS ALWAYS EXIST

INTRO

R/W

3 PERFORMANCE PRINCIPLES

Enterprise Storage Capacity Shipped In 3Q'15

Analyze the Future

33.1 EXABYTES

Eventually, All Data Goes To Block Storage

INTRO

FUN

Agenda

Let's Take A Drive... And Test It!

Detour! What Does "Random" Mean?

INTRO

IMAGINE THAT THE KEYBOARD IS A DISK DRIVE

© 2015 Storage Networking Industry Association. All Rights Reserved.

R/W TECH RAID

FUN

END

11

What Does "Sequential" Mean?

IMAGINE THAT THE KEYBOARD

© 2015 Storage Networking Industry Association. All Rights Reserved.

INTRO R/W TECH RAID

END

FUN

"Sequential Read" Example

INTRO

R/W TECH RAID

END

FUN

Let's Take A Drive... And Test It!

Let's Take Two Drives... And Test Them!

INTRO R/W TECH RAID FUN END

And Add More SSDs

RANDOM 4Kib I/O PERFORMANCE COMPARISON

© 2015 Storage Networking Industry Association. All Rights Reserved.

16

Agenda

INTRO	INTRODUCTION
R/W	READING, WRITING; WHAT IS THE DIFFERENCE?
ТЕСН	How does this tech work anyway?
RAID	WHAT IF YOU NEED MORE THAN ONE?
FUN	Performance?
END	SUMMARY

How Does This Tech Work?

FLASH

HDD OR DISK DRIVE

RAID

FUN

END

R/W

INTRO

TECH

WRITE

© 2015 Storage Networking Industry Association. All Rights Reserved.

Spinning Drives And Sectors

R/W

INTRO

TECH

RAID

FUN

Flash And NAND Gates

EVERY NAND CAN BE SET TO 0 INDIVIDUALLY

TO SET BACK TO 1, AN ENTIRE GROUP NEEDS TO BE RESET

FUN

Flash Construction

FLASH DEVICE

REDIRECT ON OVER-WRITE

AN IO IS REDIRECTED TO A CLEAN BLOCK/PAGE LEAVING OLD BLOCK/PAGE DIRTY

FLASH BLOCK

Garbage Collection

FLASH DEVICE

GARBAGE COLLECTION

ERASE—1 DIRTY BLOCK AT A TIME (WHEN NUMBER OF CLEAN BLOCKS IS LOW)

R/W

INTRO

Sequential Vs. Random

SSD or Flash

HDD OR DISK DRIVE

Agenda

INTRO	INTRODUCTION
R/W	READING, WRITING; WHAT IS THE DIFFERENCE?
ТЕСН	How does this tech work anyway?
RAID	What if you need more than one?
FUN	Performance?
END	SUMMARY

Just One?

INTRO

R/W

TECH

RAID

FUN

END

25

RAID—<u>Redundant Array Of Inexpensive Disks</u>

INTRO

R/W

TECH

RAID > FUN > END

R/W

TECH

RAID

FUN

R/W

TECH

RAID

FUN

END

© 2015 Storage Networking Industry Association. All Rights Reserved.

R/W

TECH

RAID

FUN

END

* RAID-6/-DP requires more than one parity

RAID Partial Writes

All Single Parity RAID: RAID-3, -4, -5, and etc.

1 READ

PERFORMANCE

2 READS

2 WRITES

SINGLE PARTIAL WRITE:

- READ OLD DATA
- **READ** OLD PARITY
- CALCULATE NEW PARITY
- WRITE NEW DATA
- WRITE NEW PARITY

100 IOs 70R/30W = 70 READ + 30 WRITE IOS

BACKEND = (70R + 30 * (2W + 2R)) = 190 IOS RAID PENALTY

RAID

FUN

END

INTRO R/W TECH

SNIÁ. | ETHERNET ESF | STORAGE

RAID Implementation

INTRO

R/W TECH RAID

FUN

Erasure Coding Implementation

INTRO

FUN

R/W

TECH

RAID

FUN

Agenda

INTRO	INTRODUCTION
R/W	READING, WRITING; WHAT IS THE DIFFERENCE?
ТЕСН	How does this tech work anyway?
RAID	WHAT IF YOU NEED MORE THAN ONE?
FUN	Performance?
END	SUMMARY

What "Really" Happens With RAID-5?

HDD POTENTIAL AGGREGATE 4KiB RANDOM WRITE PERFORMANCE (As Seen at Client)

What "Really" Happens With RAID-5?

HDD POTENTIAL AGGREGATE 4KiB RANDOM WRITE PERFORMANCE (AS SEEN AT CLIENT)

© 2015 Storage Networking Industry Association. All Rights Reserved.

36

HDD POTENTIAL AGGREGATE 4KiB RANDOM WRITE **PERFORMANCE** (As SEEN AT CLIENT)

© 2015 Storage Networking Industry Association. All Rights Reserved.

37

FLASH POTENTIAL AGGREGATE 4KiB RANDOM WRITE PERFORMANCE (AS SEEN AT CLIENT)

INTRO

R/W

TECH

RAID

FUN

END

38

IOPS

FLASH POTENTIAL AGGREGATE 4KiB RANDOM WRITE PERFORMANCE (As Seen at Client)

25,000

FLASH POTENTIAL AGGREGATE 4KiB RANDOM WRITE PERFORMANCE (As Seen at Client)

20,000 5045 ഗ്പ് 0 5399 5045 10,000 5045 5,000 9736 9736 5045 318 0 HDD REMINDER INDIVIDUAL DEVICES 3+1 RAID-5 CACHING RAID CONTROLLER ■ Device3 ■ Device4 ■ 3+1R5 ■ Secret Sauce DEVICE2 DEVICE1

25,000

FLASH POTENTIAL AGGREGATE 4KiB RANDOM WRITE

(MiB/s, As SEEN AT CLIENT)

INTRO

R/W

FLASH POTENTIAL AGGREGATE 128KiB SEQUENTIAL READS

(MB/s, As SEEN AT CLIENT)

INTRO

R/W TECH RAID FUN

Flash In The Real World

RAID

END

FUN

Flash In The Real World

© 2015 Storage Networking Industry Association. All Rights Reserved.

44

FUN

RAID

Flash In The Real World

© 2015 Storage Networking Industry Association. All Rights Reserved.

INTRO R/W

RAID

FUN

Agenda

INTRO	INTRODUCTION
R/W	READING, WRITING; WHAT IS THE DIFFERENCE?
ТЕСН	How does this tech work anyway?
RAID	WHAT IF YOU NEED MORE THAN ONE?
FUN	Performance?
END	Summary

Storage Performance Benchmarking

After This Webcast

A PDF and a PPT of the slides for this and all previous parts of this Webcast series will be posted to the SNIA Ethernet Storage Forum (ESF) website and available on-demand

- PPT and PDF: <u>http://www.snia.org/forums/esf/knowledge/webcasts</u>
- Presentation Recording: <u>https://www.brighttalk.com/webcast/663/164323</u>
- A full Q&A from this webcast, including answers to questions we couldn't get to today, will be posted to the SNIA-ESF blog
 - http://sniaesfblog.org/

Follow us on Twitter @SNIAESF, @RogovMark, @KenCantrellJr, @DrJMetz

Next Webcast – Second Half of 2016

"Storage Performance Benchmarking: Part 4"

QUESTIONS?

THANK

Appendix – Additional Reading

Appendix – More Reading

- SNIA S3 TWG Guide to SSD Performance: <u>http://www.snia.org/sites/default/files/UnderstandingSSDPerformance.Jan12.web_.pdf</u>
- SNIA S3 TWG SSD Performance Primer, 2013: <u>http://www.snia.org/sites/default/files/SNIASSSI.SSDPerformance-APrimer2013.pdf</u>
- Benchmarking methods for randomly sampling from a file, and why random seeks can (usually) hurt performance: http://simpsonlab.github.io/2015/05/19/io-performance/
- Excellent hard drive overview: https://www.backblaze.com/hard-drive.html
- SSD Performance results: <u>http://www.tomshardware.com/charts/ssd-charts-2014/benchmarks,129.html</u>
- SSD Performance results: <u>http://www.anandtech.com/show/6433/intel-ssd-dc-s3700-200gb-review/3</u>
- Intel Performance Benchmarking for PCIe* and NVMe* Enterprise Solid-State Drives: <u>http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-pcie-nvme-enterprise-ssds-white-paper.pdf</u>
- SSD M.2 Interface: <u>http://arstechnica.com/gadgets/2015/02/understanding-m-2-the-interface-that-will-speed-up-your-next-ssd/</u>
- More complete SSD interface article, covering NVMe, U.2 and M.2: <u>http://blog.ocz.com/ssd-interfaces-sata-m2-u2-nvme/</u>
- SSD vs HDD performance characteristics: <u>http://www.tomshardware.com/reviews/ssd-gaming-performance,2991-</u>
 <u>3.html</u>

RAID

- http://www.raid-recovery-guide.com/raid5-parity.aspx
- http://rickardnobel.se/how-raid5-works/
- http://igoro.com/archive/how-raid-6-dual-parity-calculation-works/
- RAID Perf Calculator: <u>http://wintelguy.com/raidperf.pl</u>
- RAID Reliability Calculator: <u>http://wintelguy.com/raidmttdl.pl</u>
- RAID Failure Calculator: <u>http://raid-failure.com/raid10-50-60-failure.aspx</u>
- RAID Survival Rate Simulation: <u>https://linustechtips.com/main/topic/103179-lets-talk-about-raid-survival-rates/</u>