SNIA. | NETWORKING NSF | STORAGE

Not Again! Data Deduplication for Storage Systems

Live Webcast November 10, 2020 10:00 am PT

Today's Presenters

Alex McDonald Moderator Independent Consultant Vice Chair SNIA NSF

Abhishek Rajimwale Distinguished Member of Technical Staff Dell Technologies

John Kim Chair, SNIA NSF NVIDIA

SNIA-At-A-Glance

SNIA-at-a-Glance

organizations

2,000 active contributing members

IT end users & storage pros worldwide

Learn more: snia.org/technical

Technologies We Cover

SNIA. | NETWORKING NSF | STORAGE

Ethernet iSCSI NVMe-oF InfiniBand Fibre Channel, FCoE Hyperconverged (HCI) Storage protocols (block, file, object) Virtualized storage Software-defined storage

SNIA Legal Notice

- The material contained in this presentation is copyrighted by the SNIA unless otherwise noted.
- Member companies and individual members may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced in their entirety without modification
 - The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA.
- Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.
- The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.

Agenda

- Deduplication Basics
- Concepts and Considerations
- Deduplication in Action

Deduplication Basics

Protection Storage Use-Case

Why Data Is So Often Duplicated

- Email attachments
- Users' local copies of data
- Test/development projects
- Backups and mirroring
- Result:
 - Hundreds of exact duplicates of files
 - Many files or objects that are nearly identical

Data Duplication Basic Idea

- Save (or transmit) first occurrence of each data chunk;
- Find reoccurring data chunks
- When duplicate chunk is encountered, save (or send) pointers or symbols referencing recurring data chunks, instead of sending storage or sending the data earlier.

Why Deduplicate Data?

Benefits

- Save space
- Save bandwidth
- Reduce wear on flash
- Save time on backups

Not Usually Benefits

- Improve performance on primary storage
- Improve security

Deduplicate or Compress?

Deduplication

- Usually works on files/objects (blocks for backup)
- Operate broadly/globally
- Scope is at on block level or above (coarse grained)

Compression

- Usually works on files, objects or storage devices (drives)
- Operates locally
- Scope is at block level or below (fine grained)

Who or What Does the Deduplication?

Where Deduplication Can Happen	How commonly is it done?	Granularity	Typical Scope	Comment
Application	Rare (except in email systems)	Files or objects	One application's data	Applications compression is more common
Local file system	Very Rare	Blocks	Local file system	File system compression is more common
Network device	Rare except for WAN optimization	Blocks	Transmitted data	Common in WAN optimization appliances
Storage device (drive)	Very Rare (so far)	Blocks	Data on that device	Could happen soon with computational storage
Storage system	Common	Blocks	Data on that system	Can combine w/compression
Backup system	Very common	Blocks and/or files	All backed-up data	Often dedupes globally then compresses at media layer

Using Deduplication with Compression and Encryption

- Many storage systems do both dedupe and compression
- Storage system can compress or dedupe first
 - Compressing first locally can hurt global dedupe
 - Or application compresses (e.g. audio/video/photo) then storage dedupes
- Strong encryption blocks deduplication
 - Encrypt after data reduction
 - If encrypt locally, must decrypt to perform global dedupe for backup

Data Deduplication

Concepts and Considerations

File/Object-based Dedupe

NSF

STORAGE

Block-based Dedupe

Fixed-size Blocks

Variable-size Blocks

Typical Deduplication Storage Pipeline

Partition Data into Chunks

- Calculate a feature at rolling positions
- Select an anchor point with some property

Incoming data stream

Minimum and maximum chunk size thresholds

Fingerprint Chunks Uniquely

- Cryptographically secure fingerprint
- Collisions are extremely unlikely
- MD5Sum, SHA-1, SHA-256
- Example 160 bit fingerprint
 - Chance of 1 or more collisions
 - C = number of chunks
 - b = number of bits

$$1 - e^{\frac{(-C^2 + C)}{2 * 2^b}}$$

- 530 EB, 8KB chunks, 160 bit fp = . 0000000000019%
- Many more-likely errors to worry about instead:
 - RAID6 failures within 5 years = .001%
 - Struct by lightening = .0001%

Filtering Duplicates at High Speeds

Disk Bottleneck Problem

- Example Requirement: Ingest data at 1.2 GBps
- Constraint: Cannot hold Index (fingerprint to location mapping) in memory
- 8 KB chunk size requires 150 K index lookups per second
- Index lookups are random
 - 7200 RPM SATA drive: <120 seeks/second</p>
 - 120/second @ 8 KB segment: 0.96 MBps disk
- Would need 1200 disks !!!

Design Considerations:

- Use locality of data on disk
 - Prefetching chunks fingerprints in memory cache for dedupe
- Use smarts to avoid disk
 - Bloom filter in memory determines if a segment is unique

Store consecutive chunks in "packed units" that will be loaded as one

Stoarce pozzakæd umitts fro chiskisk

Inline vs. Post-process

Inline: Dedupe data as it is ingested, before it is stored persistently

- More efficient in resource consumption no landing zone
- Data doesn't need to be read back and processed
- Provides faster replicas for recovery and DR
- Easier to size

Post-process: Dedupe later by reading stored data back

- May provide better dedupe as data can be analyzed lazily
- Ingest speeds are not affected by dedupe processing delays
- May be better if data needs to be read-back immediately

Global vs. Local Deduplication

- Global dedupe means unique data stored only once across multiple nodes or partitions
 - Create global deduplication domain by filtering across multiple storage domains

Pros

- More storage efficiency as chunks are stored only in once place
- Cons
 - Increased complexity to maintain a distributed Index across nodes
 - Possibility of performance bottlenecks and higher latencies
- Storage efficiency tradeoff based on size of a single dedupe domain
 - A local dedupe domain with 20x space savings Vs global dedupe with 10x !!

Role of Flash in Deduplication

Flash as a cache

- Can be used as a log when post-processing
- Moving the index into flash accelerates lookups
- Other metadata can move into flash
- A large cache can absorb overwrites and accelerate reads
- Useful in capacity optimized (protection/backup) storage

Deduplicated flash storage:

- Flash is expensive, so deduplication (and compression) lower the price
- Flash wears out, so decreasing the writes extends the lifespan
- Makes more sense for performance optimized (primary) storage

Deduplication in Action

Protection Storage Use-Case

Deduplication with Backups: Under the Hood

Dedupe Savings in Backup

Store More Backups in a Smaller Footprint

Backup Data	Logical	Estimated Reduction	Physical
FRIDAY FULL	1 TB	2–4x	250 GB
Monday Incremental	100 GB	7–10x	10 GB
Tuesday Incremental	100 GB	7–10x	10 GB
Wednesday Incremental	100 GB	7–10x	10 GB
Thursday Incremental	100 GB	7–10x	10 GB
Second FRIDAY FULL	1 TB	50–60x	18 GB
TOTAL	2.4 TB	7.8x	308 GB

SNIA. |

NSF

NETWORKING

STORAGE

More Backups for Longer, with Less

Week 1
Week 2
Week 3
Month 1
Month 2
Month 3
Month 4

Backup Data	Cumulative Logical	Estimated Reduction	Physical
First Full	1 TB	4x	250 GB
April 7	2.4 TB	8x	308 GB
April 14	3.8 TB	10x	366 GB
April 21	5.2 TB	12x	424 GB
April 28	6.6 TB	14x	482 GB
May 31	12.2 TB	17x	714 GB
June 30	17.8 TB	19x	946 GB
July 31	23.4 TB	20x	1,178 GB
TOTAL	23.4 TB	20x	1,178 GB

Target-side and Source-side Dedupe

Target-side dedupe

- Storage system that dedupes data as it is ingested
- Often useful as a drop-in target backup appliance

Source-side dedupe

- Dedupe at the source of the data
- Eliminate redundant transfer of data to target (Backups)

Example: Backup infrastructure with source-side dedupe support

- Client or source-side support required
 - App-aware: Databases, VMs etc. can track changes
 - Agent-based: Agent talks to backup target to avoid sending data already sent
- Advantage: Can result in smaller backup windows
- Disadvantage: May not be ideal for high change rates
- Often a combination of both works best

Synthesized Backups

- Synthesize a region of data from a previous backup image to the new backup image
- Dedupe storage can optimize by copying chunk references instead of data
- Useful for file system backups

Change Block Tracking (CBT)

- The previous backup image is cloned
- New full image created by updating the clone by overwriting changed blocks
- Oracle Incremental Backups and VM backups use CBT

Replication with Deduplication

Summary

"New York, New York"

- So good, they named it twice
- "New York" x2
- Deduplication is so common, it's hard to find storage systems without it as a feature
- Works with files, block and object storage
- The big win: significantly reduces costs by many factors
 - "Space amplification"

Related Webcasts in this Series

- Everything You Wanted to Know About Storage But Were Too Proud to Ask: Data Reduction
 - https://www.snia.org/educational-library/everything-you-wanted-knowbut-weretoo-proud-ask-data-reduction-2020
- Compression: Putting the Squeeze on Storage
 - https://www.snia.org/educational-library/compression-putting-squeeze-storage-2020

After this Webcast

- Please rate this webcast and provide us with your feedback
- This webcast and a copy of the slides will be available at the SNIA Educational Library <u>https://www.snia.org/educational-library</u>
- A Q&A from this webcast, including answers to questions we couldn't get to today, will be posted on our blog at <u>https://sniansfblog.org/</u>
- Follow us on Twitter <u>@SNIANSF</u>

Thank You

