SNIA. | NETWORKING NSF | STORAGE

Object Storage: Trends, Use Cases

Live Webcast November 16, 2021 10:00 am PT / 1:00 pm ET

Today's Presenters

Christine McMonigal Intel

Alex McDonald SNIA NSF Vice Chair

David McIntyre Samsung Jon Toor Cloudian

SNIA-at-a-Glance

2,500 active contributing members

180 industry leading organizations

50,000 IT end users & storage pros worldwide

Learn more: snia.org/technical 🔰 @SNIA

Ethernet, Fibre Channel, InfiniBand®

iSCSI, NVMe-oF[™], NFS, SMB

Virtualized, HCI, Software-defined Storage

Technologies We Cover

Storage Protocols (block, file, object)

SNIA. | NETWORKING

Securing Data

SNIA Legal Notice

- The material contained in this presentation is copyrighted by the SNIA unless otherwise noted.
- Member companies and individual members may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced in their entirety without modification
 - The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA.
- Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.
- The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.

Agenda

- Object Storage Characteristics
- Object Storage Use Cases
- Object Storage Acceleration with Computational Storage
- Roundtable Q&A

Object Storage Characteristics

Alex McDonald

Object Storage

How can we visualize object storage?

(Hugely simplified!)

Object vs. Key Value

Similarities:

- The object identifier or the URI (the equivalent of the key) can be an arbitrary string
- The data part can be any size
- Differences:
 - Object stores can have metadata or attributes
 - Key value offers strong consistency
 - Key Value storage is device level only; object stores can span many devices and can have location independence
- An object is made up of
 - A unique key (the object ID)
 - A value (the data associated with the key)
 - Zero or more metadata attributes (which may not be unique)

Objects, Amazon S3 and Kubernetes COSI

Amazon S3

- Internet based object store & access via HTTP
- Not quite a flat nameless environment
 - Objects stored in named buckets

Kube COSI: Why another object interface?

- "Kubernetes abstracts file/block storage via the CSI standard"
- "Primitives for file/block storage do not extend well to object storage"
- "No common protocol for consumption across various implementations of object storage" (!)

Object Storage Use Cases

Jon Toor

Ransomware Protection

Ransomware protection as part of automated backup workflow

Media and Entertainment

NSF

STORAGE

Cloud Services

Objective:

- Scalable storage service
- Backup as a service

Requirements:

- Compatible with backup solution
- S3 API

Solution:

- S3 compatible object storage
- Distributed across two sites

GENERAL DYNAMICS Information Technology

Data Sovereignty

- Data privacy concerns when using U.S.-based public cloud
- Opportunity for regional cloud service providers

Object	
Storage	

Cloud storage within geographic boundaries

European Commission

REPUBLIC OF AUSTRIA Parliament

Data Management

Objective:

- Scalable storage for video and digital evidence management
- Disaster Recovery (DR) capability (Hurricane risk!)

Requirements:

- Compatible with Getac evidence management
- AWS S3 compatibility

Solution:

- Object storage at two sites
- Replication to AWS S3 for DR

Calcasieu, LA Sheriff

IoT / Video Surveillance

Requirements

- S3-compatible object storage
- Multi-part upload
- Rich metadata tagging

Solution

- Object storage at central location
- Configurable metadata tag sizes
- Collects sensor data + video data

In 2025, 75% of Enterprise-Generated Data Will Be at the Edge

- Distributed storage becomes critical
- Centrally managed, locally sited

Source: Seagate diagram https://www.seagate.com/datasphere-2021/

Object Storage Acceleration with Computational Storage

David McIntyre

High Performance Object Storage Acceleration on S3 SELECT

Object Storage Queries

- 1) Data transformed to Key Value stores
- 2) Data is tagged and portioned
- Queries are run on computational storage as NVMe-oF target

Benefits

- Faster queries
- Lesser network traffic
- Lower TCO due to reduced CPU and network traffic

Use Cases

Large scale real time analytics - Smart City, Smart Home, eHealth, IoT, Images, Video, Security

Near Data Processing for S3 Select with Computational Storage

NSF

STORAGE

End-to-End S3_Select with HPOS

-----> Normal data path 22 | ©2021 Storage Networking Industry Association. All Rights Reserved.

Computational Memory Area CMA

SNIA. | NETWORKING

NSF | STORAGE

AWS S3 Select vs HPOS* S3 Select

* HPOS: High Performance Object Store

Summary

- AWS' S3 object storage service introduced object storage to a broader audience
- The growth of object storage has mirrored the growth of containers
- Object storage is suitable for a broad range of today's essential use cases
- Object storage and Computational storage can be complementary technologies used to improve performance

Roundtable Q&A

After this Webcast

- Please rate this webcast and provide us with your feedback
- This webcast and a copy of the slides are available at the SNIA Educational Library <u>https://www.snia.org/educational-library</u>
- A Q&A from this webcast, including answers to questions we couldn't get to today, will be posted on our blog at <u>https://sniansfblog.org/</u>
- Follow us on Twitter <u>@SNIANSF</u>

Thank You

