
QUIC- Will it Replace TCP/IP?

Live Webcast
April 2, 2020
10:00 am PT

© 2020 Storage Networking Industry Association. All Rights Reserved. 2

Today’s Presenters

Lars Eggert
Technical Director, Networking

NetApp

Tim Lustig
Director, Corporate Ethernet Marketing

Mellanox Technologies

© 2020 Storage Networking Industry Association. All Rights Reserved.

SNIA-At-A-Glance

3

© 2020 Storage Networking Industry Association. All Rights Reserved.

NSF Technologies

4

© 2020 Storage Networking Industry Association. All Rights Reserved.

SNIA Legal Notice

The material contained in this presentation copyright NetApp Inc and Lars Eggert and others as
noted.
Member companies and individual members may use this material in presentations and literature
under the following conditions:

Any slide or slides used must be reproduced in their entirety without modification
The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these
presentations.

This presentation is a project of the SNIA.
Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be,
or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal
opinion please contact your attorney.
The information presented herein represents the author's personal opinion and current
understanding of the relevant issues involved. The author, the presenter, and the SNIA do not
assume any responsibility or liability for damages arising out of any reliance on or use of this
information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.

5

© 2020 Storage Networking Industry Association. All Rights Reserved.

Agenda

Internet Transport
Current Challenges
QUIC
Status & discussion

6

© 2020 Storage Networking Industry Association. All Rights Reserved.

QUIC: a fast, secure, evolvable
transport protocol for the Internet

Fast better user experience than TCP/TLS for HTTP/2 and other content

Secure always-encrypted end-to-end security, resist pervasive monitoring

Evolvable prevent network from ossifying, deploy new QUIC versions quickly

Transport support all TCP content & more (realtime media, etc.)
provide better abstractions, avoid known TCP issues

UDP CC TLS HTTP

7

© 2020 Storage Networking Industry Association. All Rights Reserved.

tl;dr

The web will move to QUIC first, and then everything else will
This year!

If you do anything with HTTP, TCP or just networks,
QUIC should be on your radar now

8

© 2020 Storage Networking Industry Association. All Rights Reserved.

Internet transport

Internet Transport

9

© 2020 Storage Networking Industry Association. All Rights Reserved.

The Internet Hourglass

Inspired by OSI “seven-layer” model
Minus presentation (6) and session (5)

“IP on everything”
All link tech looks the same (approx.)

Transport layer provides
communication abstractions to apps

Unicast/multicast
Multiplexing
Streams/messages
Reliability (full/partial)
Flow/congestion control
…

10

Classical version

Steve Deering. Watching the Waist of the Protocol Hourglass.
Keynote, IEEE ICNP 1998, Austin, TX, USA. http://www.ieee-
icnp.org/1998/Keynote.ppt

email WWW phone...

SMTP HTTP RTP...

TCP UDP…

IP

ethernet PPP…

CSMA async sonet...

copper fiber radio...

Layer 3

Layer 4

Layer 7

Layer 2

Layer 1

Boardwatch Magazine, Aug. 1994.

© 2020 Storage Networking Industry Association. All Rights Reserved.

The Internet Hourglass
2015 version (ca.)

 ip4
ip6

Link

TCP

Applications

TLS
HTTP

In the meantime...
• The interface at the endpoint is

largely the same as it has been:

• "The network is a file descriptor"

• The waist of the hourglass has crept
up to HTTP: even less flexible.

• Transport is squeezed in the middle.

• Way out: applications implement
their own new transport features.

3

11

The waist has split: IPv4
and IPv6
TCP is drowning out UDP
HTTP and TLS are de facto
part of transport
Consequence: web apps
on IPv4/6

Layer 3

Layer 4

Layer 7

Layer 1/2
B. Trammell and J. Hildebrand, "Evolving Transport in the Internet," in IEEE
Internet Computing, vol. 18, no. 5, pp. 60-64, Sept.-Oct. 2014.

© 2020 Storage Networking Industry Association. All Rights Reserved.

What Happened?

12

Transport slow to evolve (esp. TCP)
Fundamentally difficult problem

Network made assumptions about
what (TCP) traffic looked like & how it
behaved
Tried to “help” and “manage”

TCP “accelerators” & firewalls, DPI, NAT,
etc.

The web happened
Almost all content on HTTP(S)
Easier/cheaper to develop for & deploy on
Amplified by mobile & cloud
Baked-in client/server assumption

Internet
ossification

Slow
transport
evolution

Middlebox
boom

Rise of
the web

© 2020 Storage Networking Industry Association. All Rights Reserved.

Example Ossifications

IP
•Send from/to anywhere anytime vs. enforced directionality & timeliness

IP
•Many protocols on top of IP vs. packets dropped unless TCP or UDP

IP
•End-to-end addressing vs. network assumes it can rewrite addresses/ports

IP
•Use IP options to signal vs. options not used (dropped) on WAN

*
•Bits have meaning only inside a layer vs. network can (should!) touch bits across a packet

TCP
•Network is stateless vs. network assumes it can track entire connection

TCP
•Data has meaning to app only vs. network can rewrite or insert

13

© 2020 Storage Networking Industry Association. All Rights Reserved.

Internet transport

TCP Challenges

14

© 2020 Storage Networking Industry Association. All Rights Reserved.

TCP is Not Aging Well

We’re hitting hard limits (e.g., TCP option space)
40B total (15 * 4B - 20)
SACK-OK (2), timestamp (10), window Scale (3), MSS (4)
Multipath needs 12, Fast-Open 6-18…

Incredibly difficult to evolve, c.f. Multipath TCP
New TCP must look like old TCP, otherwise it gets dropped
TCP is already very complicated

Slow upgrade cycles for new TCP stacks (kernel update required)
Better with more frequent update cycles on consumer OS
Still high-risk and invasive (reboot)

TCP headers not encrypted or authenticated – middleboxes can still meddle
TCP-MD5 and TCP-AO in practice only used for (some) BGP sessions

15

By Ere at Norwegian Wikipedia (Own work) [Public domain], via Wikimedia
Commons

© 2020 Storage Networking Industry Association. All Rights Reserved.

Middleboxes Meddle

Algorithm 1. TCP acceleration algorithm

1: p ¼ receive packetðÞ
2: f ¼ classifyðpÞ
3: if ðis TCPðpÞÞ then
4: if ðis SYNðpÞÞ then
5: if ð!record existsðf ÞÞ then
6: establish buffer spaceðf Þ
7: end if
8: sendðSYN=ACK;upstreamÞ
9: sendðp;downstreamÞ

10: start timerðpÞ
11: else if ððis DATAðpÞÞ&&ðrecord existsðf ÞÞÞ then
12: if ð!buffer fullðf ÞÞ then
13: storeðp; f Þ
14: sendðACK;upstreamÞ
15: if ðoutstanding ACKsðf Þ þ size of ðpÞ <

max windowðf Þ then
16: sendðp;downstreamÞ
17: start timerðpÞ
18: end if
19: end if
20: else if ððis ACKðpÞÞ&&ðrecord existsð!f ÞÞÞ then
21: stop timerð!pÞ
22: releaseð !ðpÞ;!f Þ
23: while ðoutstanding ACKsð!f Þþ

size of ðnext stored packetð!f ÞÞ <
max windowð!f Þ do

24: sendðnext stored packetð!f Þ;!f Þ
25: start timerðnext stored packetð!f ÞÞ
26: end while
27: else if ððis FINðpÞÞ&&ðrecord existsðf ÞÞÞ then
28: sendðFIN=ACK; upstreamÞ
29: sendðp;downstreamÞ
30: start timerðpÞ
31: mark buffer for removalðf Þ
32: else
33: handle exceptionðp; f Þ
34: end if
35: else
36: sendðp; downstreamÞ
37: end if
38:
39: when ðtimeoutðpÞÞ
40: retransmitðpÞ

The flow control window size that is advertised by an accelera-
tor node is the amount of free buffer space up to half of the total
buffer space allocated to the connection (maximum 64 kB). In

addition to the state maintenance as described above, a RTT esti-
mator needs to be maintained for each flow according to the TCP
specification. The timers for each transmitted packet can be imple-
mented efficiently as described in [22]. Since each connection re-
quires buffer space, it might not be possible to accelerate all
connections traversing an accelerator node. In such a case, only a
subset of connections is accelerated (not considered in Algorithm
1). This can be performed as part of the packet classification step
in Line 2.

3.2.3. NP software components
Fig. 3 shows the architecture of a TCP acceleration node on a

network processor. The NP implements two processing paths for
packets. Packets that cannot be accelerated due to resource con-
straints or non-TCP protocols are forwarded without any modifica-
tion. In order to identify such packets, it is necessary to have a
packet classification mechanism (e.g., simple 5-tuple hash func-
tion). Packets that are accelerated require Layer 3 and Layer 4 pro-
cessing, which involves IP input processing, TCP acceleration, and
IP output processing. The TCP accelerator has access to a large
memory to store TCP state (connection state as well as data buf-
fers). It is important to note that packets which are processed in
the TCP accelerator are not addressed to the router system that
performs the acceleration. Instead, the router transparently inter-
cepts these packets and performs the acceleration. The end sys-
tems are also unaware of this processing that is performed by
the router.

3.2.4. Processing and memory resources
TCP processing requires additional computational and memory

resources as compared to plain IP forwarding. The processing con-
sists of IP input and output processing as well as TCP processing.
The total processing requirements in terms of the number of pro-
cessing cycles are presented in Section 5. The memory require-
ments are determined by the size of the TCP connection state
(tens of bytes) and the TCP buffer size (tens of kilobytes). The buf-
fer requirements for a TCP accelerator are determined by the max-
imum window size that is allowed on a connection. The accelerator
needs to reliably buffer all packets that have not been acknowl-
edged by the receiver plus all packets that can possible be sent
by the sender. Thus, the ideal buffer size is two times the maxi-
mum window size of the connection.

Sender Conventional
router

SYN

SYN / ACK 1

Receiver

SYN

SYN / ACK 1

Data 1
Data 1

ACK 2

ACK 2

Data 2
Data 3 Data 2

Data 3
ACK 3

ACK 3

Data 4
Data 4Data 3
Data 3
ACK 3

ACK 5ACK 3

ACK 5

timeout

Sender TCP
accelerator

SYN

SYN / ACK 1

Receiver

SYNSYN / ACK 1

Data 1

Data 1

ACK 2

ACK 2

Data 2
Data 3

Data 2

Data 3

ACK 3

ACK 3

Data 4
Data 3

ACK 4

ACK 5

ACK 5

ACK 3

Accelerator
buffer

1

1 2
timeout

Data 3
3

2

ACK 4

Data 4
3 4

4

timeout

Fig. 2. Message sequence chart of an example connection comparing conventional and accelerated TCP connections.

694 S. Ladiwala et al. / Computer Communications 32 (2009) 691–702

Example: TCP accelerators

network. In this section, we first describe the overall idea of trans-
parent TCP acceleration from the perspective of an end-to-end con-
nection traversing the network. Then, we view TCP acceleration
from a router’s point of view.

3.1. Network topology

Fig. 1(a) illustrates a conventional TCP connection where only
the end-systems participate in Layer 4 processing. The network
performs Layer 3 forwarding on datagrams and does not alter
any of the Layer 4 segments. Fig. 1(b) illustrates how TCP acceler-
ation nodes (denoted by ‘A’) change this paradigm. An accelerator
node terminates TCP connections and opens a second connection
to the next Layer 4 node. This allows the accelerator node to shield
the TCP interactions (e.g., packet loss) from one connection to an-
other. As a result, the feedback control loops, which implement the
fundamental mechanisms of reliability, flow control, and conges-
tion control, are smaller with lower delay. As a result, accelerated
TCP can react faster and achieve higher throughput than conven-
tional TCP.

3.2. Node architecture

Before we quantify the performance improvement from TCP
Acceleration in Section 4, we discuss how an accelerator node
implements this functionality.

3.2.1. Acceleration example
To illustrate the behavior of an individual TCP accelerator node,

Fig. 2 shows a space–time diagram for an example connection over
conventional routers and TCP accelerators. For simplicity, unidirec-
tional traffic with 1-byte packets is assumed. The initial sequence
number is assumed to be 1. As Fig. 2(a) illustrates in this example,
conventional routers just forward segments without interacting on
the transport layer. In contrast, the TCP accelerator node in
Fig. 2(b) actively participates in the TCP connection (e.g., responds
to SYN, DATA, ACK, and FIN segments). By receiving packets and

acknowledging them to the sender before they have arrived at
the receiver, the TCP accelerator effectively splits one TCP connec-
tion into two connections with shorter feedback loops. In order to
be able to retransmit packets that may get lost after an acknowl-
edgment has been sent to the sender, the accelerator node requires
a buffer (shown on the side of Fig. 2). The following example shows
the typical behavior of the TCP accelerator:

! Immediate response to sender: SYN and DATA packets are
immediately buffered and acknowledged. The only exception
is the first arrival of DATA 3, where no buffer space is
available.

! Local retransmission: When packets are lost, they are locally
retransmitted (e.g., DATA 3). Due to a shorter RTT for both con-
nections, a shorter timeout can more quickly detect the packet
loss.

! Flow control back pressure: When the connection from the
accelerator node is slower than the one to it, buffer space will
fill up and no additional packets can be acknowledged and
stored. This will cause the sender to detect packet loss and
slow down.

The most important observation in Fig. 2 is that the end-systems
do not see any difference to a conventional TCP connection (other
than packet order and performance).

3.2.2. Acceleration algorithm
The detailed interactions of a TCP accelerator node with a flow

of packets from a connection are shown in Algorithm 1. The steps
of the algorithm are:

! Lines 1–2: A packet is received and classified. The variable p rep-
resents the packet and f represents the flow to which the packet
belongs.

! Lines 3 and 35–36: If a packet is not a TCP packet, it is forwarded
without further consideration.

! Lines 4–10: If a packet is a SYN packet (indicating connection
setup) and no flow record exists, then a flow record is estab-
lished. A SYN/ACK is returned to the sender and the SYN is for-
warded towards the destination (‘‘upstream” and ‘‘downstream”
respectively). Since the SYN can get lost, a timer needs to be
started for that packet. If the SYN/ACK gets lost, the original sen-
der will retransmit the SYN and cause a retransmission of the
SYN/ACK.

! Lines 11–19: If data are received from the upstream sender and
buffer space is available, then the packet is buffered and for-
warded downstream. If no buffer space is available, the TCP
accelerator needs to propagate back-pressure to slow down
the sender. In this case, the packet is not acknowledged and per-
ceived as a packet drop by the sender. The congestion control
mechanism of the sender will slow down the sending rate until
buffer space becomes available. Packets are only forwarded
when the downstream connection does not have too much out-
standing data (lines 15–18).

! Lines 20–26: If an ACK is received, then buffer space in the com-
plementary flow (flow in the opposite direction, denoted by !f)
can be released. This reduces the amount of outstanding data
and (potentially several) packets can be transmitted from the
buffer space of !f .

! Lines 27–31: If a FIN is received, connection teardown can be
initiated.

! Lines 32–33: If a packet does not match the above criteria, it is
handled as an exception.

! Lines 39–40: Whenever a timeout occurs, the packet that has ini-
tiated the timer is retransmitted.

TCP connection

A
A

TCP connection TCP connection TCP connection

Fig. 1. Conventional and accelerated TCP connections. Systems that implement TCP
functionality are marked with ‘A’.

S. Ladiwala et al. / Computer Communications 32 (2009) 691–702 693

Sameer Ladiwala, Ramaswamy Ramaswamy, and Tilman Wolf. Transparent TCP acceleration. Computer Communications, Volume 32, Issue 4, 2009, pages 691-702.

16

© 2020 Storage Networking Industry Association. All Rights Reserved.

Middleboxes Meddle

17

Example: Nation states attacking end users or services

B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield, S. McKune, A. Rey, J. Scott-Railton, R. Deibert, and V. Paxson. An
Analysis of China’s “Great Cannon”. 5th USENIX FOCI Workshop, 2015.

QFIRE Pilot Lead. NSA/Technology Directorate. QFIRE pilot report. 2011.

© 2020 Storage Networking Industry Association. All Rights Reserved.

Internet transport

QUIC
Introduction

18

© 2020 Storage Networking Industry Association. All Rights Reserved.

How Do You Make the Web Faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

google.com

Us
er

-p
er

ce
iv

ed
 la

te
nc

y
QUIC - Redefining Internet Transport. J. Iyengar. IETF-93 QUIC BoF presentation, 2015.

19

© 2020 Storage Networking Industry Association. All Rights Reserved.

How Do You Make the Web Faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

google.com

Google CDN

Us
er

-p
er

ce
iv

ed
 la

te
nc

y

Build a
carrier-grade

network google.com

QUIC - Redefining Internet Transport. J. Iyengar. IETF-93 QUIC BoF presentation, 2015.

20

© 2020 Storage Networking Industry Association. All Rights Reserved.

How Do You Make the Web Faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

Chrome

HTTP/2

google.com

Google CDN

Us
er

-p
er

ce
iv

ed
 la

te
nc

y

Launch your
own browser

Update HTTP

Build a
carrier-grade

network google.com
21

QUIC - Redefining Internet Transport. J. Iyengar. IETF-93 QUIC BoF presentation, 2015.

© 2020 Storage Networking Industry Association. All Rights Reserved.

How Do You Make the Web Faster?

$BROWSER

HTTP/1.1

TLS 1.2

TCP

IP

Physical Network

Chrome

HTTP/2

???

google.com

Google CDN

Us
er

-p
er

ce
iv

ed
 la

te
nc

y

Launch your
own browser

Update HTTP

Build a
carrier-grade

network

Update
the
transport

google.com
22

QUIC - Redefining Internet Transport. J. Iyengar. IETF-93 QUIC BoF presentation, 2015.

© 2020 Storage Networking Industry Association. All Rights Reserved.

QUIC: a fast, secure, evolvable
transport protocol for the Internet

Fast better user experience than TCP/TLS for HTTP/2 and other content

Secure always-encrypted end-to-end security, resist pervasive monitoring

Evolvable prevent network from ossifying, deploy new QUIC versions quickly

Transport support all TCP content & more (realtime media, etc.)
provide better abstractions, avoid known TCP issues

UDP CC TLS HTTP

23

© 2020 Storage Networking Industry Association. All Rights Reserved.

QUIC is Not That New, Actually

Originates with Google, deployed between Google services and Chrome
since 2014
As of mid-2017, makes up 35% of Google egress traffic (~7% of total
Internet traffic)

24

A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev,
W. Chang, and Z. Shi. 2017. The QUIC Transport Protocol: Design and Internet-Scale Deployment.. ACM SIGCOMM, 2017.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA A. Langley et al.

Figure 2: Timeline showing the percentage of Google traffic served over
QUIC. Significant increases and decreases are described in Section 5.1.

Figure 3: Increase in secure web traffic to Google’s front-end servers.

our current deployment, but IETF standardization will modularize
it into constituent parts. In addition to separating out and specify-
ing the core protocol [33, 34], IETF work will describe an explicit
mapping of HTTP on QUIC [9] and separate and replace QUIC’s
cryptographic handshake with the more recent TLS 1.3 [55, 63].
This paper describes pre-IETF QUIC design and deployment. While
details of the protocol will change through IETF deliberation, we
expect its core design and performance to remain unchanged.

In this paper, we often interleave our discussions of the protocol,
its use in the HTTPS stack, and its implementation. These three are
deeply intertwined in our experience. The paper attempts to reflect
this connectedness without losing clarity.

2 MOTIVATION: WHY QUIC?
Growth in latency-sensitive web services and use of the web as a plat-
form for applications is placing unprecedented demands on reducing
web latency. Web latency remains an impediment to improving user-
experience [21, 25], and tail latency remains a hurdle to scaling the
web platform [15]. At the same time, the Internet is rapidly shifting
from insecure to secure traffic, which adds delays. As an example
of a general trend, Figure 3 shows how secure web traffic to Google
has increased dramatically over a short period of time as services
have embraced HTTPS. Efforts to reduce latency in the underlying
transport mechanisms commonly run into the following fundamental
limitations of the TLS/TCP ecosystem.
Protocol Entrenchment: While new transport protocols have been
specified to meet evolving application demands beyond TCP’s sim-
ple service [40, 62], they have not seen wide deployment [49, 52, 58].
Middleboxes have accidentally become key control points in the In-
ternet’s architecture: firewalls tend to block anything unfamiliar for
security reasons and Network Address Translators (NATs) rewrite
the transport header, making both incapable of allowing traffic from
new transports without adding explicit support for them. Any packet
content not protected by end-to-end security, such as the TCP packet

header, has become fair game for middleboxes to inspect and mod-
ify. As a result, even modifying TCP remains challenging due to
its ossification by middleboxes [29, 49, 54]. Deploying changes to
TCP has reached a point of diminishing returns, where simple pro-
tocol changes are now expected to take upwards of a decade to see
significant deployment (see Section 8).
Implementation Entrenchment: As the Internet continues to evolve
and as attacks on various parts of the infrastructure (including the
transport) remain a threat, there is a need to be able to deploy changes
to clients rapidly. TCP is commonly implemented in the Operat-
ing System (OS) kernel. As a result, even if TCP modifications
were deployable, pushing changes to TCP stacks typically requires
OS upgrades. This coupling of the transport implementation to the
OS limits deployment velocity of TCP changes; OS upgrades have
system-wide impact and the upgrade pipelines and mechanisms are
appropriately cautious [28]. Even with increasing mobile OS popula-
tions that have more rapid upgrade cycles, sizeable user populations
often end up several years behind. OS upgrades at servers tend to
be faster by an order of magnitude but can still take many months
because of appropriately rigorous stability and performance testing
of the entire OS. This limits the deployment and iteration velocity
of even simple networking changes.
Handshake Delay: The generality of TCP and TLS continues to
serve Internet evolution well, but the costs of layering have become
increasingly visible with increasing latency demands on the HTTPS
stack. TCP connections commonly incur at least one round-trip delay
of connection setup time before any application data can be sent,
and TLS adds two round trips to this delay2. While network band-
width has increased over time, the speed of light remains constant.
Most connections on the Internet, and certainly most transactions on
the web, are short transfers and are most impacted by unnecessary
handshake round trips.
Head-of-line Blocking Delay: To reduce latency and overhead costs
of using multiple TCP connections, HTTP/1.1 recommends limiting
the number of connections initiated by a client to any server [19].
To reduce transaction latency further, HTTP/2 multiplexes multi-
ple objects and recommends using a single TCP connection to any
server [8]. TCP’s bytestream abstraction, however, prevents applica-
tions from controlling the framing of their communications [12] and
imposes a "latency tax" on application frames whose delivery must
wait for retransmissions of previously lost TCP segments.

In general, the deployment of transport modifications for the
web requires changes to web servers and clients, to the transport
stack in server and/or client OSes, and often to intervening mid-
dleboxes. Deploying changes to all three components requires in-
centivizing and coordinating between application developers, OS
vendors, middlebox vendors, and the network operators that deploy
these middleboxes. QUIC encrypts transport headers and builds
transport functions atop UDP, avoiding dependence on vendors and
network operators and moving control of transport deployment to
the applications that directly benefit from them.

2TCP Fast Open [11, 53] and TLS 1.3 [55] seek to address this delay, and we discuss
them later in Section 8.

184

© 2020 Storage Networking Industry Association. All Rights Reserved.

QUIC in the Stack

Integrated transport stack on top of UDP
Replaces TCP and some part of HTTP; reuses TLS-1.3
Initial target application: HTTP/2
Prediction: many others will follow

25

J. Iyengar. QUIC Tutorial A New Internet Transport/ IETF-98 Tutorial, 2017.

TLS

HTTP/2

TCP

IP

QUIC

TCP-like CC +
loss recovery

UDP

HTTP over QUIC

TLS 1.3

© 2020 Storage Networking Industry Association. All Rights Reserved.

Why UDP?

TCP hard to evolve
Other protocols blocked by middleboxes (SCTP,
etc.)
UDP is all we have left
Not without problems!

Many middleboxes ossified on “UDP is for DNS”
Enforce short binding timeouts, etc.
Short-term issue with hardware NIC offloading

Also, benefits
Can deploy in userspace (no kernel update needed)
Can offer alternative transport types (partial reliability, etc.)

UDP

Image from http://itpro.nikkeibp.co.jp

26

UDP

TCP

Got it?

UDP

© 2020 Storage Networking Industry Association. All Rights Reserved.

Why Congestion Control?

Functional CC is absolute requirement for operation over real networks
UDP has no CC

First approach: take what works for TCP, apply to QUIC
Consequence: need

Segment/packet numbers

Acknowledgments (ACKs)
Round-trip time (RTT) estimators
etc.

Not an area of large innovation at present
This will change

27
Image from People’s Daily, http://people.cn/

CC

© 2020 Storage Networking Industry Association. All Rights Reserved.

Why Transport-layer Security (TLS)?

End-to-end security is critical
To protect users
To prevent network ossification

TLS is very widely used
Can leverage all community R&D
Can leverage the PKI

Don’t want custom security –
too much to get wrong

Even TLS keeps having issues
But TLS 1.3 removes a lot of cruft

And benefit from new TLS features
E.g., 0-RTT handshakes (inspired by gQUIC-crypto)

28

Images from Cloudflare.

TLS1.2 TLS1.3
1RTT

TLS1.3
0RTT

TLS

© 2020 Storage Networking Industry Association. All Rights Reserved.

Why HTTP?

Because that’s where the impact is
Web industry incredibly interested in improved UE and security

Rapid update cycles for browsers, servers, CDNs, etc.
Can deploy and update QUIC quickly

Many other app protocols will follow

29

HTTP

© 2020 Storage Networking Industry Association. All Rights Reserved.

Internet transport

QUIC
Selected Aspects

30

© 2020 Storage Networking Industry Association. All Rights Reserved.

Minimal Network-Visible Header

31

With QUIC, the network sees:
Packet type (partially obfuscated)
QUIC version (only in long packet header)
Destination CID
Packet number (obfuscated)
With TCP, also

ACK numbers, ECN information
Timestamps
Windows & scale factors

Also, entire QUIC header is
authenticated,
i.e., not modifiable

© 2020 Storage Networking Industry Association. All Rights Reserved.

Version Negotiation

Date

IPs

Q0 Q024 Q025 Q026 Q027 Q028 Q029
Q030 Q031 Q032 Q033 Q034 Q035 Q036
Q037 Q038 Q039 Q040 Q041 wwww

1. Oct 2016 1. Jan 2017 1. Apr 2017 1. Jul 2017 1. Oct 2017
0

200k

400k

600k

800k

32

32-bit version field
IP: 8 bits, TCP: 0 bits

Allows rapid deployment of new versions
Plus, vendor-proprietary versions

Very few protocol invariants
Location and lengths of version and CIDs in
LH
Location and lengths of CID in SH (if present)
Version negotiation server response
Etc. (details under discussion)

Everything else is version-dependent
But must grease unused codepoints!

(Currently under re-design)

Source: RWTH QUIC Measurements: https://quic.comsys.rwth-aachen.de/

© 2020 Storage Networking Industry Association. All Rights Reserved.

1-RTT vs. 0-RTT Handshakes

QUIC client can send 0-RTT data in first packets
Using new TLS 1.3 feature

Except for very first contact between client and server
Requires 1-RTT handshake (same latency as TCP w/o TLS)

Huge latency win in many cases (faster than TCP)
HTTPS: 7 messages
QUIC 1-RTT or TCP: 5 messages
QUIC 0-RTT: 2 messages

Also helps with
Tolerating NAT re-bindings
Connection migration to different physical interface

But only for idempotent data

33

© 2020 Storage Networking Industry Association. All Rights Reserved.

Everything Else is Frames

PADDING
PING
ACK
RESET_STREAM
STOP_SENDING
CRYPTO
NEW_TOKEN
STREAM
MAX_DATA
MAX_STREAM_DATA
MAX_STREAMS
DATA_BLOCKED
STREAM_DATA_BLOCKED
STREAMS_BLOCKED
NEW_CONNECTION_ID
RETIRE_CONNECTION_ID
PATH_CHALLENGE
PATH_RESPONSE
CONNECTION_CLOSE
HANDSHAKE_DONE

34

Inside the crypto payload,
QUIC carries a sequence of frames

Encrypted = can change between versions
Frames can come in any order
Frames carry control data and payload
data
Payload data is carried in STREAM frames

Most other frames carry control data
Packet acknowledgment blocks in ACK
frames

© 2020 Storage Networking Industry Association. All Rights Reserved.

Stream Multiplexing

A QUIC connection multiplexes potentially many streams
Congestion control happens at the connection level
Connections are also flow controlled

Streams
Carry units of application data
Can be uni- or bidirectional
Can be opened by client or server
Are flow controlled
Currently, always reliably transmitted (partial reliability coming soon)

Number of open streams is negotiated over time (as are stream
windows)
Stream prioritization is up to application

35

© 2020 Storage Networking Industry Association. All Rights Reserved.

Internet transport

Current Status & Discussions

36

© 2020 Storage Networking Industry Association. All Rights Reserved.

Beyond QUIC v1

Applications
(esp. realtime) Multipath

Performance
(CC, Satellite, etc.) Extensions

QUIC v2

37

© 2020 Storage Networking Industry Association. All Rights Reserved.

Encryption vs.
Network Management

38

Claims that network management systems rely on TCP header inspection
To obtain loss, RTT, etc. information

Concern that encrypting this information will be troublesome for operators
Proposals for limited information exposure

e.g., the “spin bit”, the “loss bits”
Uncertainties

Can networks trust this information?
Incentives for opting in? Penalties??

© 2020 Storage Networking Industry Association. All Rights Reserved.

Encryption vs.
Allowing Passive Measurements

Independent passive measurability of the Internet
one key factor to its success

Many protocols deficiencies were identified and fixed based on independent
measurements

Are we giving up something fundamental here?
Or are we at a point where active measurements have taken
over anyway?

39

© 2020 Storage Networking Industry Association. All Rights Reserved.

QUIC and the IETF

https://quicwg.github.io/
https://quicdev.slack.com

40

QUIC is being standardized in the
IETF

QUIC is already very different from Google
QUIC

Est. delivery date: Sep 2020
20+ known implementation efforts:

© 2020 Storage Networking Industry Association. All Rights Reserved.

Interop Status

https://docs.google.com/spreadsheets/d/1D0tW89vO
oaScs3IY9RGC0UesWGAwE6xyLk0l4JtvTVg/edit#gid
=438405370 41

© 2020 Storage Networking Industry Association. All Rights Reserved.

How to Participate?

QUIC WG is open to all
Use the mailing list
Discuss issues/PRs on
GitHub
Participate in meetings

https://quicwg.org/
will get you started
You can talk to us first, too
“Note Well” – disclose IPR

42

IETF is open to all
3x meetings/year, next:

Vancouver, March
Madrid, July
Bangkok, November

Grants for academics:
ACM/IRTF ANRW
workshop (travel
grants, only students)
IRTF Chair
discretionary fund
(need strong reason)

https://quicwg.org/ links to
a list of implementations
Many are open source and
live on GitHub
Contact maintainers and
start issues/PRs

© 2020 Storage Networking Industry Association. All Rights Reserved.

After this Webcast

Please rate this webcast and provide us with feedback
This webcast and a PDF of the slides will be posted to the SNIA
Networking Storage Forum (NSF) website and available on-demand
at www.snia.org/forums/nsf/knowledge/webcasts
A full Q&A from this webcast, including answers to questions we
couldn't get to today, will be posted to the SNIA-NSF blog:
sniansfblog.org
Follow us on Twitter @SNIANSF

43© 2020 Storage Networking Industry Association. All Rights Reserved.

After this Webcast

Please rate this webcast and provide us with feedback
This webcast and a PDF of the slides will be posted to the SNIA
Networking Storage Forum (NSF) website and available on-demand
at www.snia.org/forums/nsf/knowledge/webcasts
A full Q&A from this webcast, including answers to questions we
couldn't get to today, will be posted to the SNIA-NSF blog:
sniansfblog.org
Follow us on Twitter @SNIANSF

43

http://www.snia.org/forums/esf/knowledge/webcasts
http://sniaesfblog.org/

© 2020 Storage Networking Industry Association. All Rights Reserved.

Internet transport

Thank you
Questions later?

Email lars@netapp.com

44

