RoCE vs. iWARP
A Great Storage Debate

Live Webcast
August 22, 2018
10:00 am PT
Today’s Presenters

John Kim
SNIA ESF Chair
Mellanox

Tim Lustig
Mellanox

Fred Zhang
Intel
SNIA-At-A-Glance

170 industry leading organizations

3,500 active contributing members

50,000 IT end users & storage pros worldwide

Learn more: snia.org/technical

© 2018 Storage Networking Industry Association. All Rights Reserved.
The material contained in this presentation is copyrighted by the SNIA unless otherwise noted.

Member companies and individual members may use this material in presentations and literature under the following conditions:

- Any slide or slides used must be reproduced in their entirety without modification
- The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.

This presentation is a project of the SNIA.

Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.

The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
Agenda

▶ Introductions John Kim – Moderator
 ◆ What is RDMA?
▶ Technology Introductions
 ◆ RoCE – Tim Lustig, Mellanox Technologies
 ◆ iWARP – Fred Zhang, Intel Corporation
▶ Similarities and Differences
▶ Use Cases
▶ Challenge Topics
 ◆ Performance, manageability, security, cost, etc.
What is RDMA?

- Remote Direct Memory Access
 - DMA from the memory of one node into the memory of another node without involving either one’s operating system
- Performed by the network adapter itself, no work needs to be done by the CPUs, caches or context switches
- Benefits:
 - High throughput
 - Low latency
 - Reduced CPU utilization
RDMA as a Transport

- Block storage networking technology and networked file storage
 - SCSI protocol running (usually) on TCP/IP or UDP
 - SMB Direct, NFS v4
 - Storage Spaces Direct

- RDMA supported by native InfiniBand*, RoCE and iWARP network protocols

- Standardization (RoCE by IBTA, iWARP by IETF)
 - RFCs 5040, 5041, 5044, 7306, etc.
 - iWARP first available: 2007

- “iSCSI” usually means SCSI on TCP/IP over Ethernet

*Almost always over Ethernet
RoCE – Tim Lustig, Mellanox
What is RoCE?

RoCE (RDMA over Converged Ethernet)

- The most popular RDMA implementation over Ethernet
 - Enables highest throughput, lowest latency and lowest CPU overhead for RDMA
 - Designed for enterprise, virtualized, cloud, web 2.0 and storage platforms
 - Increases performance in congested networks
 - Deployed in large data centers

- Proven, most widely deployed RDMA transport
 - Server efficiency and scaling to 1000s of nodes
 - Scales to 10/25/40/50 and 100G Ethernet support and beyond
RoCE Overview

RoCE v1
- Needs custom settings on the switch
 - Priority queues to guarantee lossless L2 delivery
 - Takes advantage of PFC (Priority Flow Control) in DCB Ethernet

RoCE v2 (lossless) – Improved efficiency
- RDMA transport paradigm depends on a set of characteristics
 - No dropped packets
 - Arbitrary topologies
 - Traffic class types
RoCE Support

❖ DCB – Data Center Bridging
 ❖ DXBX – Data Center Bridging Exchange
 ❖ ECN – Explicit Congestion Notification
 ❖ PFC – Priority Flow Control
 ❖ ETS – Enhanced Transmission Specification

<table>
<thead>
<tr>
<th>Ethernet</th>
<th>IEEE 802.1x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestion Notification</td>
<td>Yes (802.1az) ECN, DCB</td>
</tr>
<tr>
<td>Lossless</td>
<td>Yes (802.1Qbb) PFC</td>
</tr>
<tr>
<td>Classes of Service</td>
<td>Yes (802.1Qaz) ETS</td>
</tr>
</tbody>
</table>

© 2018 Storage Networking Industry Association. All Rights Reserved.
Wide Adoption and Support

- VMware
- Microsoft SMB 3.0 (Storage Space Direct) and Azure
- Oracle
- IBM Spectrum Scale (formerly known as IBM GPFS)
- Gluster, Lustre, Apache Spark, Hadoop and Ceph
- Software-Defined Storage (SDS) and hyperconverged vendors
- Nearly all NVMe-oF demonstrations, designs, and customer deployments are using RoCE
RoCE Benchmarks

TCP vs RoCE

MSFT SMB 3.0

Ceph

© 2018 Storage Networking Industry Association. All Rights Reserved.
RoCE Future-Proofs the Data Center

- Transform Ethernet networks and remove network, storage and CPU bottlenecks
 - Support for NVMe eliminates throughput and latency bottlenecks of slower SAS and SATA drivers
 - A NVMe SSD can provide sustained bandwidth of about 50 HDDs
 - RoCE extends NVMe to NVMe-oF
 - Access remote storage systems similarly as locally attached storage
 - Solid State NVM is expected to be 1,000 times faster than flash
 - 3D XPoint, Optane

© 2018 Storage Networking Industry Association. All Rights Reserved.
RoCE Deployment Guide 2018 Edition

The second edition of the RoCE Deployment Guide reflects both a growing industry interest in RoCE technology’s network acceleration capabilities as well as the increasing number of RoCE-capable product offerings to support it.

DOWNLOAD NOW
iWARP – Fred Zhang, Intel
What is iWARP

- iWARP is: Internet Wide-Area RDMA Protocol
- iWARP is NOT an acronym
- iWARP can be used in different network environments: LAN, storage network, Data center, or even WAN

http://www.rdmaconsortium.org/home/FAQs_Apr25.htm
What is iWARP

- iWARP extensions to TCP/IP were standardized by the Internet Engineering Task Force (IETF) in 2007. These extensions eliminated three major sources of networking overhead: TCP/IP stack process, memory copies, and application context switches.

<table>
<thead>
<tr>
<th>Extension</th>
<th>Solution</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offload TCP/IP</td>
<td>Offloads the TCP/IP process from the CPU to the RDMA-enabled NIC (RNIC)</td>
<td>Eliminates CPU overhead for network stack processing</td>
</tr>
<tr>
<td>Zero Copy</td>
<td>iWARP enables the application to place the data directly into the destination application’s memory buffer, without unnecessary buffer copies</td>
<td>Significantly relieves CPU load and frees memory bandwidth</td>
</tr>
<tr>
<td>Less Application Context Switching</td>
<td>iWARP can bypass the OS and work in user space to post the command directly to the RNIC without the need for expensive system calls into the OS</td>
<td>Can dramatically reduce application context switching and latency</td>
</tr>
</tbody>
</table>
iWARP Protocols

Remote DMA Protocol (RDMAP)
RDMA Ops: RDMA read/write and send

Direct data placement over Reliable Transports (DDP)
Message segmentation and reassembly
Tagged and untagged buffer models
Direct data placement and in-order message delivery

Marker PDU Aligned Framing for TCP (MPA)
Framing and stronger data integrity (CRC)
FPDU alignment/containment (MPA-aware TCP)

TCP

IP
Top Tier iWARP Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Category</th>
<th>User/Kernel</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMB Direct Client/Server</td>
<td>Storage – Network file system</td>
<td>Kernel</td>
<td>Windows</td>
</tr>
<tr>
<td>Storage Spaces Direct</td>
<td>Storage – Network block storage</td>
<td>Kernel</td>
<td>Windows</td>
</tr>
<tr>
<td>NVMe* over Fabrics Initiator/Target</td>
<td>Storage – Network block storage</td>
<td>Kernel</td>
<td>Linux</td>
</tr>
<tr>
<td>NVMe over Fabrics Initiator/Target for SPDK</td>
<td>Storage – Network block storage</td>
<td>User</td>
<td>Linux</td>
</tr>
<tr>
<td>LIO iSER Initiator/Target</td>
<td>Storage – Network block storage</td>
<td>Kernel</td>
<td>Linux</td>
</tr>
<tr>
<td>uDAPL</td>
<td>Messaging middleware</td>
<td>User</td>
<td>Linux</td>
</tr>
<tr>
<td>OFI/libfabric provider for VERBs</td>
<td>Messaging middleware</td>
<td>User</td>
<td>Linux</td>
</tr>
<tr>
<td>Open MPI/Intel® MPI Library</td>
<td>HPC</td>
<td>User</td>
<td>Linux</td>
</tr>
<tr>
<td>NFS/RDMA client/server</td>
<td>Storage – network file system</td>
<td>Kernel</td>
<td>Linux</td>
</tr>
<tr>
<td>rsockets</td>
<td>Messaging middleware</td>
<td>User</td>
<td>Linux</td>
</tr>
</tbody>
</table>
iWARP Performance

>1M IOPs SMB Direct Storage Performance, 1.67x TCP

- with Intel Ethernet Connection X722 4x10Gb featured iWARP
- 4k, 70% Read 30% Write
Accelerate Live Migration with iWARP

FastLinQ QL41xxx iWARP
Reduces Live Migration Time by 58%
Highly Predictable Migrations

Benefits
Shorter Maintenance Windows
Adaptive Load Balancing – SLAs
Less Flight time = Less Risk

Live Migration - Windows Server 2016
FastLinQ QL41xxx 25GbE

Time to Migrate (in Seconds)

Number of Concurrent VM Migrations

<table>
<thead>
<tr>
<th>Number of Concurrent VM Migrations</th>
<th>TCP/IP</th>
<th>SMBDirect - iWARP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>51</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>92</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>93</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>98</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>155</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>161</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>171</td>
<td>69</td>
</tr>
</tbody>
</table>
Similarities and Differences
RoCE vs. iWARP Network Stack Differences

RoCE Vendors

© 2018 Storage Networking Industry Association. All Rights Reserved.
Key Differences

<table>
<thead>
<tr>
<th></th>
<th>RoCEv2</th>
<th>iWARP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlying Network</td>
<td>UDP</td>
<td>TCP</td>
</tr>
<tr>
<td>Congestion Management</td>
<td>Rely on DCB</td>
<td>TCP does flow control/congestion management</td>
</tr>
<tr>
<td>Adapter Offload Option</td>
<td>Full DMA</td>
<td>Full DMA and TCP/IP*</td>
</tr>
<tr>
<td>Routability</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cost</td>
<td>Comparable NIC price; Best practice is DCB on switch; DCB configuration experience</td>
<td>Comparable NIC price; Integrated with Intel Platform(4x10Gb); No requirement on switch;</td>
</tr>
</tbody>
</table>

Depending on vendor implementations
Key Differences - RoCE

- Light-weight RDMA transport - RDMA transfers done by the adapter with no involvement by the OS or device drivers

- Based on ECN/DCB (RoCEv1) standards that provide a lossless network and the ability to optimally allocate bandwidth to each protocol on the network

- Scalable to thousands of nodes based on Ethernet technologies that are widely used and well understood by network managers

- Widely deployed by Web 2.0, supported by OS vendors and storage manufacturers

- rNIC demand a slight premium but are becoming commodity NICs
Key Differences- iWARP

- Built on TCP instead of UDP
- TCP provides flow control and congestion management
 - Can still provide high throughput in congested environment
- DCB is not necessary
- Can scale to tens of thousands of nodes
- Can span multiple hops, or across multiple Data Centers
Use Cases
Use Cases - RoCE

Cloud Computing
- Efficient, scalable clustering and higher performance virtualized servers in VMware, Red Hat KVM, Citrix Xen, Microsoft Azure, Amazon EC2, Google App Engine

Storage
- Performance increase of 20 to 100% when using RoCE instead of TCP, and latency is typically reduced from 15 to 50% across Microsoft SMD Direct, Ceph and Lustre

Big Data / Data Warehousing
- Accelerates data sharing/sorting, higher IOPS and linear scaling with exponential growth
- Ideal for Oracle RAC, IBM DB2 PureScale, and Microsoft SQL

Virtualization
- VMware ESX and Windows Hyper-V now support inbox drivers to reduced migration time

Hyper-Converged (HCI)
- Achieve faster performance for storage replication and live migrations

Financial Services:
- Unleashes scalable CPU performance on low latency applications like Tibco, Wombat/NYSE, IBM WebSphere MQ, Red Hat MRG, and 29West/Informatica.

Web 2.0:
- RoCE minimizes response time, maximizes jobs per second, and enables highly scalable infrastructure designs. It’s ideal for applications like Hadoop, Memcached, Eucalyptus, and Cassandra.
Use Cases - iWARP

- **High Performance Computing**
 - Low-latency message passing over an Ethernet network
 - Optimized for Open MPI/Intel® MPI

- **Storage: Hyper-Converged or Disaggregated**
 - Low latency, high throughput
 - Built-in Microsoft SMB Direct, Storage Spaces Direct, Storage Replica
 - Support NVMe over Fabric, Persistent Memory over Fabric
 - Ideally for Hyper-Converged storage due to TCP based flow control and congestion management

- **Big Data**
 - Accelerates Hadoop MapReduce, SPARK Shuffling
 - Alluxio acceleration

- **Virtualization**
 - Windows Server Hyper-V
 - Windows VM live migration acceleration
Summary

<table>
<thead>
<tr>
<th></th>
<th>RoCE</th>
<th>iWARP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>UPD/IP</td>
<td>TCP/IP</td>
</tr>
<tr>
<td>Network</td>
<td>Lossless</td>
<td>Standard</td>
</tr>
<tr>
<td>Adapter</td>
<td>rNIC (soft-RoCE)</td>
<td>NIC</td>
</tr>
<tr>
<td>Offload</td>
<td>Hardware</td>
<td>Hardware</td>
</tr>
<tr>
<td>Switch</td>
<td>DCB (resilient RoCE)</td>
<td>Standard</td>
</tr>
</tbody>
</table>
Our Next Great Storage Debate: Centralized vs. Distributed
September 11, 2018
Register:
https://www.brighttalk.com/webcast/663/332357
More Webcasts

♦ Other Great Storage Debates
 - FCoE vs. iSCSI vs. iSER
 https://www.brighttalk.com/webcast/663/318003
 - Fibre Channel vs. iSCSI:
 https://www.brighttalk.com/webcast/663/297837
 - File vs. Block vs. Object Storage:
 https://www.brighttalk.com/webcast/663/308609

♦ On-Demand “Everything You Wanted To Know About Storage But Were Too Proud To Ask” Series
 - https://www.snia.org/forums/esf/knowledge/webcasts-topics
After This Webcast

- Please rate this webcast and provide us with feedback
- This webcast and a PDF of the slides will be posted to the SNIA Ethernet Storage Forum (ESF) website and available on-demand at www.snia.org/forums/esf/knowledge/webcasts
- A full Q&A from this webcast, including answers to questions we couldn't get to today, will be posted to the SNIA-ESF blog: sniaesfblog.org
- Follow us on Twitter @SNIAESF
Thank You