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Agenda 

!   Overview of Containers 
!   Virtual machines vs. Containers 
!   Quick history, where we are now 
!   How Docker containers work 
!   Why containers are compelling 

!   Storage for Containers 
!   Persistent and non-persistent 
!   Options for Containers 
!   NAS vs. SAN 

!   Future Considerations 



Virtual Machine vs. Container 



A Brief History of On-premises Technologies 
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Why Containers are Compelling 

!   Operating System level isolation 
!   Uses cgroups and namespaces in the Linux Kernel 
!   Native Windows Containers in Windows Server 2016 

!   Two types: Windows Server Container & Hyper-V Container 

!   Containers are about applications 
!   Define application needs – the infrastructure will build it 
!   Agility and consistency in the software supply chain 

!   Gives Developers and Operations Teams common interface 
!   Developers care about software dependencies for their app 
!   Operations care about reliability, availability and performance 

!   Docker builds, ships and runs applications everywhere 



Orchestration 

!   Distributed Cluster 
!   Container Scheduler 
!   Examples  

!   Docker Swarm 
!   Kubernetes 
!   Apache Mesos 
!   Nomad 



Docker Environment Overview 
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Docker Image File System Model 

Host OS 

!   Layers are composed by a union file system 
!   Changes are stored with the particular container instance image (COW) 
!   Data stored in the container post-creation is only suitable for transient content 
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Docker Image File System Model 

Host OS 

!   Layers are identified using cryptographic hashes of the layer’s content 
!   Graph driver stacks the layers which provides the unified view from the container 
!   When the container is deleted, so are the changes in the Copy on Write layer 
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Graph Drivers 

!   Provides a local registry of images and layers 
!   Provides the Copy-On-Write functionality 
!   Allows for Layer creation 
!   Selection recommendations 

1.  Use the default driver for your distribution* 
2.  If implementation is within the limitations of Overlay2, use it 
3.  If using the Commercially Supported Docker Engine, check 

Docker’s compatibility matrix 

! OverlayFS 
!   AUFS 
! Btrfs 
!   Device Mapper 
!   VFS 
!   ZFS 

*Do not use the Device Mapper driver in loopback mode in production 



Locate Node Registry on External Storage 

images images 

vol1 vol3 
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Host OS 
!   Provides local persistence 
!   Bypass Copy-On-Write (COW) layer 
!   Presents a directory inside the container 
!   Persist after container is destroyed 

Docker Volume 
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!   Docker on Linux supports mount options 
!   Docker on Windows (currently) supports no options 
!   Docker Volumes are separate, named, and 

reusable entities 



Local Docker Volume 

$ docker run --name myContainer -v example:/data alpine date!
$ docker inspect myContainer!
<snip>!
 "Mounts": [!
            {!
                "Name": "example",!
                "Source": "/var/lib/docker/volumes/example/_data",!
                "Destination": "/data",!
                "Driver": "local",!
                "Mode": "z",!
                "RW": true,!
</snip>        !
!

$ docker volume create --name example!
example!
$ docker volume inspect example!
    {!
        "Name": "example",!
        "Driver": "local",!
        "Mountpoint": "/var/lib/docker/volumes/example/_data",!
        "Labels": {},!
        "Scope": "local"!
    }!



Docker Volume Behaviors 

17 

!   When the image has data in the directory where the volume is to be mounted, and 
the volume is empty, the content of the directory is copied to the volume 

!   A Docker Volume cannot be removed if it is referenced by a container 

$ docker volume create --name example!
example!
$ ls -l /var/lib/docker/volumes/example/_data!
total 0!

$ docker volume rm example!
Error response from daemon: Unable to remove volume, volume still in use: !
remove example: volume is in use - [a41a33563358b75ae483a595659fa433d34ea7761f05bd09f3151e43fd28870f]!

$ docker run -it -v example:/var/lib alpine date!
$ ls -l /var/lib/docker/volumes/example/_data!
total 0!
drwxr-xr-x 2 root root 6 Oct 18 11:58 apk!
drwxr-xr-x 2 root root 6 Oct 18 11:58 misc!
drwxr-xr-x 2 root root 6 Oct 18 11:58 udhcpd!

Create a volume and show it is empty: 

Run a container and show that the directories from the image have been copied to the volume: 

Unable to remove a volume that is referenced by a container: 



Local Persistent Storage 

images images 

/data 

/var/lib/docker/volumes/example 
example 
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$ docker volume ls!
DRIVER              VOLUME NAME!
local               example!

$ docker volume ls!
DRIVER              VOLUME NAME!



Local Persistent Storage 

images images 

/data 

/var/lib/docker/volumes/example 
No volume named example 

© 2016 Nimble Storage, Inc. 

$ docker volume ls!
DRIVER              VOLUME NAME!
local               example!

$ docker volume ls!
DRIVER              VOLUME NAME!



Host OS /usr/local/games 

!   Provides local persistence 
!   Presents a directory from the host into the container 
!   Bypass Copy-On-Write (COW) layer 
!   Not a Docker Volume: Docker Volume Behaviors Don’t Apply 

Docker Engine 

Base Image: /  

/usr/lib 

/opt/app 

Docker Mount 

Copy on Write /games 

Host Directory/File Exposed to Container 
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Directory 
Or 
File 



$ docker run --name myContainer -v /usr/local/games:/games:ro alpine date!
!
$ docker inspect myContainer !
<snip>!
        "Mounts": [!
            {!
                "Source": "/usr/local/games",!
                "Destination": "/games",!
                "Mode": ”ro",!
                "RW": false,!
</snip>!

!   Directories need not be created manually 
!   Docker engine silently creates the directory if missing 
!   Docker engine bind mounts the directory into the container (hiding existing content) 
!   Often used to expose read-only access 

Host Directory/File Exposed to Container 



Export: /var/vols 

Host OS /var/vols/data 

Docker Engine 

Base Image: /  

/usr/lib 

/opt/app 

Docker Mount 

Copy on Write /data 

!   Provides shared persistence 
!   Presents a directory from an NFS mounted export into the container 
!   Bypass Copy-On-Write (COW) layer 
!   Not a Docker Volume: Docker Volume Behaviors Don’t Apply 

Directory from NFS Mounted Filesystem 
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Directory from NFS Mounted Filesystem 

$ docker run --name myContainer -v /var/vols/data:/data alpine date!
$ docker inspect myContainer!
<snip>!
            "Mounts": [!
            {!
                "Source": "/var/vols/data",!
                "Destination": "/data",!
                "Mode": "",!
                "RW": true,!
</snip>!

!   Export should allow root access (no_root_squash) 
!   Mount should be present in /etc/fstab 
!   Directories need not be created manually 
!   Directory is bind mounted into the container (hiding existing content)  
!   No protection from accidental deletion of directory 
!   Little or no isolation between containers leads to noisy neighbor 

!   Single “bucket” of capacity 
!   Single filesystem/device providing IO 



“Batteries Included But Swappable” 

!   Docker plug-in framework announced @ DockerCon 2015 
!   Network plug-ins 
!   Volume plug-ins 

!   Plug-ins allow 3rd parties to extend the capabilities of Docker 
!   Volume Plug-ins exist for both SAN and NAS solutions 
!   Volume Plug-ins allow  

!   Local and global scope 
!   Storage system capabilities to be exposed 
!   High performance storage options for Docker Containers 



Host OS 
!   Can provides locally or globally scoped persistence 
!   Docker Volumes are separate, named, and reusable entities 
!   Bypass Copy-On-Write (COW) layer 
!   Presents a directory or filesystem inside the container 

Docker Volume Created by Plug-in 
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Docker Volume Created by Plug-in 

$ docker volume create --name example --driver=nimble!
example!
$ docker volume inspect example!
    {   "Name": ”example",!
        "Driver": "nimble",!
        "Mountpoint": "",!
        "Status": {!
            "Blocksize": 4096,!
            "DedupeEnabled": true,!
            "Description": "Docker knows this volume as example.",!
            "EncryptionCipher": ”AES-256",!
<lines removed />!
            "PerfPolicy": "DockerDefault",!
            "ThinlyProvisioned": true,!
            "VolSizeMiB": 10240,!
            "VolumeName": ”example.docker”!
        },!
        "Labels": {},!
        "Scope": "global”!
    }!



Plug-in Driven Docker Volume Creation 

!   Using the vanilla Docker client: 

!   Using Docker service with Docker SwarmKit: 

!   Using Docker Compose: 

$ docker volume create --driver=nimble –o sizeInGiB=50 --name myvol1!
$ docker run -it -v myvol1:/data alpine /bin/sh!

$ docker service create –mount type=volume,target=/usr/share/nginx/html,\ 
source=myvol1,volume-driver=nimble,volume-opt=sizeInGiB=50 nginx !

# web.yml 
version: "2" 
services: 
  web: 
    image: nginx:latest 
    ports: 
    - "8080:80" 
    volumes: 
    - myvol1:/usr/share/nginx/html 
volumes: 
  myvol1: 
    driver: nimble 
    driver_opts: 
      sizeInGiB: 50 

$ docker-compose -f web.yml –p web up –d  



Persistent Shared Storage via Plug-in 
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Persistent Shared Storage via Plug-in 
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Future Considerations 

!   Storage for Central Image Registry 
!   Performance 
!   Protection 
!   Scalability 
!   Availability  

!   Orchestration 
!   Plugging into other layers 



Resources 

!   Docker Community 
! https://forums.docker.com/c/open-source-projectsCommunity 

!   Cloud Native Computing Foundataion 
! https://www.cncf.io/ 

!   “Windows Containers” post by Taylor Brown 
! https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview 

!   Docker Documentation 
! https://docs.docker.com/ 

!   Michael Mattsson’s blog 
! https://connect.nimblestorage.com/people/mmattsson/activity 



More SNIA Webcasts on 
Containers 
!   On-Demand: Intro to Containers, Container Storage and Docker 

https://www.brighttalk.com/webcast/663/217971 

!   Live December 7, 2016: Containers: Best Practices and Data 
Management Services  
https://www.brighttalk.com/webcast/663/227349 

!   Stay updated! Join our Containers opt-in email List 
http://eepurl.com/ciMk0P 

 

 
 



After This Webcast 

!   Please rate this webcast and provide us with feedback 
!   This Webcast and a PDF of the slides will be posted to the SNIA 

Ethernet Storage Forum (ESF) website and available on-demand 
! www.snia.org/forums/esf/knowledge/webcasts  
!   A full Q&A from this webcast, including answers to questions we 

couldn't get to today, will be posted to the SNIA-ESF blog: 
sniaesfblog.org 

!   Follow us on Twitter @SNIAESF 
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