
Current State of Storage
in the Container World

November 17, 2016

Chad Hintz, Cisco

Eric Forgette, Nimble Storage

SNIA Legal Notice

!   The material contained in this presentation is copyrighted by the SNIA unless otherwise
noted.

!   Member companies and individual members may use this material in presentations and
literature under the following conditions:

!   Any slide or slides used must be reproduced in their entirety without modification
!   The SNIA must be acknowledged as the source of any material used in the body of any document containing material

from these presentations.
!   This presentation is a project of the SNIA.
!   Neither the author nor the presenter is an attorney and nothing in this presentation is intended

to be, or should be construed as legal advice or an opinion of counsel. If you need legal
advice or a legal opinion please contact your attorney.

!   The information presented herein represents the author's personal opinion and current
understanding of the relevant issues involved. The author, the presenter, and the SNIA do not
assume any responsibility or liability for damages arising out of any reliance on or use of this
information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.

About SNIA

Today’s Presenters

Eric Forgette
Technical Director
Nimble Storage

@eric4jet

Eric Hintz
Principal Systems
Engineer Cisco,
SNIA-ESF Board

@chadh0517

Agenda

!   Overview of Containers
!   Virtual machines vs. Containers
!   Quick history, where we are now
!   How Docker containers work
!   Why containers are compelling

!   Storage for Containers
!   Persistent and non-persistent
!   Options for Containers
!   NAS vs. SAN

!   Future Considerations

Virtual Machine vs. Container

A Brief History of On-premises Technologies

Mainframe Unix ®

IBM
DEC

APP

OS

APP

APP

OS

Multi-processor

Fair Share

Projects

Zones

Linux / Windows

O(1)

Mass-produced

APP

APP

APP

APP

APP

OS

APP

OS

OS

OS

APP

APP APP

Multi-core

Hypervisor

“App per Machine”

OS

APP

OS

OS

OS

APP

APP APP

ESX

Xen

Hyper-V

KVM

2x2x2
2x4x2

Container

OS

proc

OS

APP

APP

APP

APP

namespaces

cgroups

Completely Fair Share

proc

proc
proc
proc

proc

proc
proc
proc

Timesharing

“App per
Virtual Machine”

© 2016 Nimble Storage, Inc.

Why Containers are Compelling

!   Operating System level isolation
!   Uses cgroups and namespaces in the Linux Kernel
!   Native Windows Containers in Windows Server 2016

!   Two types: Windows Server Container & Hyper-V Container

!   Containers are about applications
!   Define application needs – the infrastructure will build it
!   Agility and consistency in the software supply chain

!   Gives Developers and Operations Teams common interface
!   Developers care about software dependencies for their app
!   Operations care about reliability, availability and performance

!   Docker builds, ships and runs applications everywhere

Orchestration

!   Distributed Cluster
!   Container Scheduler
!   Examples

!   Docker Swarm
!   Kubernetes
!   Apache Mesos
!   Nomad

Docker Environment Overview

images images

Docker
Hub

Docker
Trusted
Registry

© 2016 Nimble Storage, Inc.

Docker Image File System Model

Host OS

!   Layers are composed by a union file system
!   Changes are stored with the particular container instance image (COW)
!   Data stored in the container post-creation is only suitable for transient content

Docker Engine

Base Image

Libraries

My Application

Copy on Write

Actual application

Application dependencies

Runtime dependencies

Immutable
Image Layers

Layers can be
shared by other
containers

Container

© 2016 Nimble Storage, Inc.

Docker Image File System Model

Host OS

!   Layers are identified using cryptographic hashes of the layer’s content
!   Graph driver stacks the layers which provides the unified view from the container
!   When the container is deleted, so are the changes in the Copy on Write layer

Docker Engine

/

/usr/lib

/opt/local/app

Copy on Write

My Application

Libraries

Base Image

Immutable
Image Layers

Layers can be
shared by other
containers

Container

© 2016 Nimble Storage, Inc.

Graph Drivers

!   Provides a local registry of images and layers
!   Provides the Copy-On-Write functionality
!   Allows for Layer creation
!   Selection recommendations

1.  Use the default driver for your distribution*
2.  If implementation is within the limitations of Overlay2, use it
3.  If using the Commercially Supported Docker Engine, check

Docker’s compatibility matrix

! OverlayFS
!   AUFS
! Btrfs
!   Device Mapper
!   VFS
!   ZFS

*Do not use the Device Mapper driver in loopback mode in production

Locate Node Registry on External Storage

images images

vol1 vol3

© 2016 Nimble Storage, Inc.

Docker
Hub

Docker
Trusted
Registry

Host OS
!   Provides local persistence
!   Bypass Copy-On-Write (COW) layer
!   Presents a directory inside the container
!   Persist after container is destroyed

Docker Volume

Docker Engine

Base Image: /

/usr/lib example

/opt/app
Docker Volume

Copy on Write /data

Driver: local

© 2016 Nimble Storage, Inc.

!   Docker on Linux supports mount options
!   Docker on Windows (currently) supports no options
!   Docker Volumes are separate, named, and

reusable entities

Local Docker Volume

$ docker run --name myContainer -v example:/data alpine date!
$ docker inspect myContainer!
<snip>!
 "Mounts": [!
 {!
 "Name": "example",!
 "Source": "/var/lib/docker/volumes/example/_data",!
 "Destination": "/data",!
 "Driver": "local",!
 "Mode": "z",!
 "RW": true,!
</snip> !
!

$ docker volume create --name example!
example!
$ docker volume inspect example!
 {!
 "Name": "example",!
 "Driver": "local",!
 "Mountpoint": "/var/lib/docker/volumes/example/_data",!
 "Labels": {},!
 "Scope": "local"!
 }!

Docker Volume Behaviors

17

!   When the image has data in the directory where the volume is to be mounted, and
the volume is empty, the content of the directory is copied to the volume

!   A Docker Volume cannot be removed if it is referenced by a container

$ docker volume create --name example!
example!
$ ls -l /var/lib/docker/volumes/example/_data!
total 0!

$ docker volume rm example!
Error response from daemon: Unable to remove volume, volume still in use: !
remove example: volume is in use - [a41a33563358b75ae483a595659fa433d34ea7761f05bd09f3151e43fd28870f]!

$ docker run -it -v example:/var/lib alpine date!
$ ls -l /var/lib/docker/volumes/example/_data!
total 0!
drwxr-xr-x 2 root root 6 Oct 18 11:58 apk!
drwxr-xr-x 2 root root 6 Oct 18 11:58 misc!
drwxr-xr-x 2 root root 6 Oct 18 11:58 udhcpd!

Create a volume and show it is empty:

Run a container and show that the directories from the image have been copied to the volume:

Unable to remove a volume that is referenced by a container:

Local Persistent Storage

images images

/data

/var/lib/docker/volumes/example
example

© 2016 Nimble Storage, Inc.

$ docker volume ls!
DRIVER VOLUME NAME!
local example!

$ docker volume ls!
DRIVER VOLUME NAME!

Local Persistent Storage

images images

/data

/var/lib/docker/volumes/example
No volume named example

© 2016 Nimble Storage, Inc.

$ docker volume ls!
DRIVER VOLUME NAME!
local example!

$ docker volume ls!
DRIVER VOLUME NAME!

Host OS /usr/local/games

!   Provides local persistence
!   Presents a directory from the host into the container
!   Bypass Copy-On-Write (COW) layer
!   Not a Docker Volume: Docker Volume Behaviors Don’t Apply

Docker Engine

Base Image: /

/usr/lib

/opt/app

Docker Mount

Copy on Write /games

Host Directory/File Exposed to Container

© 2016 Nimble Storage, Inc.

Directory
Or
File

$ docker run --name myContainer -v /usr/local/games:/games:ro alpine date!
!
$ docker inspect myContainer !
<snip>!
 "Mounts": [!
 {!
 "Source": "/usr/local/games",!
 "Destination": "/games",!
 "Mode": ”ro",!
 "RW": false,!
</snip>!

!   Directories need not be created manually
!   Docker engine silently creates the directory if missing
!   Docker engine bind mounts the directory into the container (hiding existing content)
!   Often used to expose read-only access

Host Directory/File Exposed to Container

Export: /var/vols

Host OS /var/vols/data

Docker Engine

Base Image: /

/usr/lib

/opt/app

Docker Mount

Copy on Write /data

!   Provides shared persistence
!   Presents a directory from an NFS mounted export into the container
!   Bypass Copy-On-Write (COW) layer
!   Not a Docker Volume: Docker Volume Behaviors Don’t Apply

Directory from NFS Mounted Filesystem

© 2016 Nimble Storage, Inc.

Directory from NFS Mounted Filesystem

$ docker run --name myContainer -v /var/vols/data:/data alpine date!
$ docker inspect myContainer!
<snip>!
 "Mounts": [!
 {!
 "Source": "/var/vols/data",!
 "Destination": "/data",!
 "Mode": "",!
 "RW": true,!
</snip>!

!   Export should allow root access (no_root_squash)
!   Mount should be present in /etc/fstab
!   Directories need not be created manually
!   Directory is bind mounted into the container (hiding existing content)
!   No protection from accidental deletion of directory
!   Little or no isolation between containers leads to noisy neighbor

!   Single “bucket” of capacity
!   Single filesystem/device providing IO

“Batteries Included But Swappable”

!   Docker plug-in framework announced @ DockerCon 2015
!   Network plug-ins
!   Volume plug-ins

!   Plug-ins allow 3rd parties to extend the capabilities of Docker
!   Volume Plug-ins exist for both SAN and NAS solutions
!   Volume Plug-ins allow

!   Local and global scope
!   Storage system capabilities to be exposed
!   High performance storage options for Docker Containers

Host OS
!   Can provides locally or globally scoped persistence
!   Docker Volumes are separate, named, and reusable entities
!   Bypass Copy-On-Write (COW) layer
!   Presents a directory or filesystem inside the container

Docker Volume Created by Plug-in

Docker Engine

Base Image: /

/usr/lib data

/opt/app
Docker Volume

Copy on Write /data

Driver: nimble

© 2016 Nimble Storage, Inc.

Docker Volume Created by Plug-in

$ docker volume create --name example --driver=nimble!
example!
$ docker volume inspect example!
 { "Name": ”example",!
 "Driver": "nimble",!
 "Mountpoint": "",!
 "Status": {!
 "Blocksize": 4096,!
 "DedupeEnabled": true,!
 "Description": "Docker knows this volume as example.",!
 "EncryptionCipher": ”AES-256",!
<lines removed />!
 "PerfPolicy": "DockerDefault",!
 "ThinlyProvisioned": true,!
 "VolSizeMiB": 10240,!
 "VolumeName": ”example.docker”!
 },!
 "Labels": {},!
 "Scope": "global”!
 }!

Plug-in Driven Docker Volume Creation

!   Using the vanilla Docker client:

!   Using Docker service with Docker SwarmKit:

!   Using Docker Compose:

$ docker volume create --driver=nimble –o sizeInGiB=50 --name myvol1!
$ docker run -it -v myvol1:/data alpine /bin/sh!

$ docker service create –mount type=volume,target=/usr/share/nginx/html,\
source=myvol1,volume-driver=nimble,volume-opt=sizeInGiB=50 nginx !

web.yml
version: "2"
services:
 web:
 image: nginx:latest
 ports:
 - "8080:80"
 volumes:
 - myvol1:/usr/share/nginx/html
volumes:
 myvol1:
 driver: nimble
 driver_opts:
 sizeInGiB: 50

$ docker-compose -f web.yml –p web up –d

Persistent Shared Storage via Plug-in

images

example
{global}

images

/data

/nimble/example

vol1 vol3

© 2016 Nimble Storage, Inc.

Persistent Shared Storage via Plug-in

images

example
{global}

images

vol1 vol3

/data

/nimble/example

© 2016 Nimble Storage, Inc.

Future Considerations

!   Storage for Central Image Registry
!   Performance
!   Protection
!   Scalability
!   Availability

!   Orchestration
!   Plugging into other layers

Resources

!   Docker Community
! https://forums.docker.com/c/open-source-projectsCommunity

!   Cloud Native Computing Foundataion
! https://www.cncf.io/

!   “Windows Containers” post by Taylor Brown
! https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview

!   Docker Documentation
! https://docs.docker.com/

!   Michael Mattsson’s blog
! https://connect.nimblestorage.com/people/mmattsson/activity

More SNIA Webcasts on
Containers
!   On-Demand: Intro to Containers, Container Storage and Docker

https://www.brighttalk.com/webcast/663/217971

!   Live December 7, 2016: Containers: Best Practices and Data
Management Services
https://www.brighttalk.com/webcast/663/227349

!   Stay updated! Join our Containers opt-in email List
http://eepurl.com/ciMk0P

After This Webcast

!   Please rate this webcast and provide us with feedback
!   This Webcast and a PDF of the slides will be posted to the SNIA

Ethernet Storage Forum (ESF) website and available on-demand
! www.snia.org/forums/esf/knowledge/webcasts
!   A full Q&A from this webcast, including answers to questions we

couldn't get to today, will be posted to the SNIA-ESF blog:
sniaesfblog.org

!   Follow us on Twitter @SNIAESF

33

Thank You

34

