

Enterprise Storage

Leah Schoeb, Member of SNIA Technical Council

SNIA Emerald™ Training

SNIA Emerald Power Efficiency Measurement Specification, for use in EPA ENERGY STAR®

July 14-17, 2014

What is an Enterprise Storage System?

Storage is more than a device

- In general, we think of a box
- We look at the device attributes
 - Capacity
 - > Performance (speeds and feeds)
- It's really about storing and retrieving information with integrity, availability, data protection, cost
- Need a strategy and efficiency to address how we deal with information

60% ── Storage

% of IT Hardware Spend

Source: IBM

Enterprise Storage System Basics

Storage System Basic Types

- Just a Bunch Of Disks (JBOD)
- Block Storage System
- File/NAS Storage System
- Solid State Storage Systems

Architectural Designs

- Scale up
- Scale out

Storage Technology

- Data Services
- Replication

Just a Bunch Of Disks (JBOD)

- Multiple disk drives
- No RAID functionality
- Can be used as
 - Individual disk drives
 - One logical volume (spanning)
- No redundancy
- No performance enhancements
- Minimal to no data protection



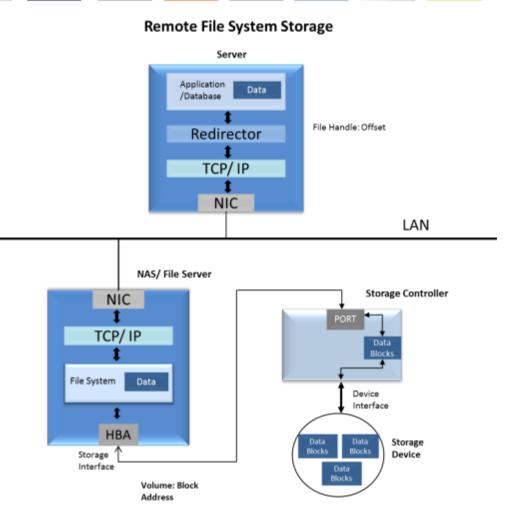
Block Storage controller System

Dual fans per power supply **Dual power supplies**

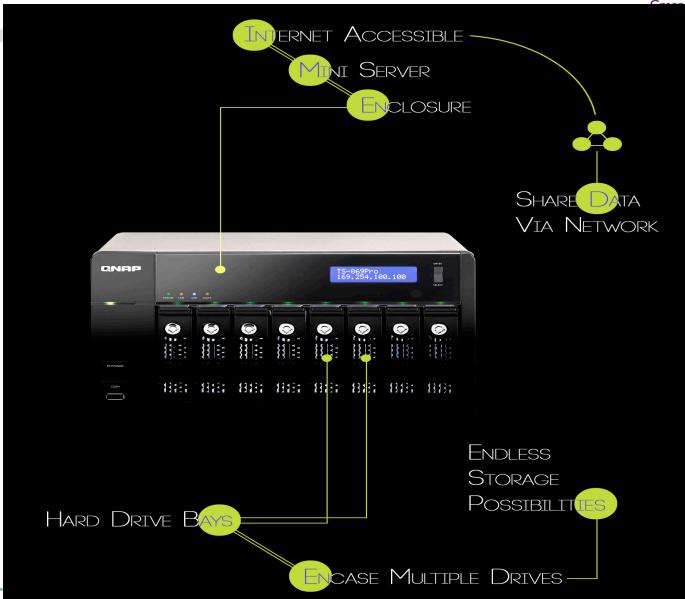
Mirrored, battery-backed ECC cache memory

Fibre Channel front-end connectivity for multi-pathing

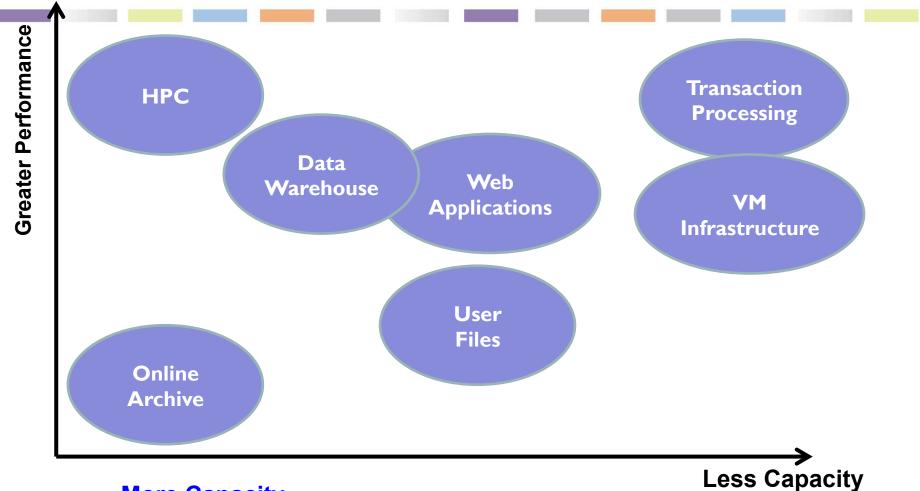
Dual active-active controllers


Dual \
management
ports

NAS


- Application writes file data to mounted file system
- File redirected over network
- NAS / File server takes file and converts to block I/O
- Data written to device as data block

NAS Storage System



SOLID STATE ARRAYS

Application Landscape for Solid State Storage

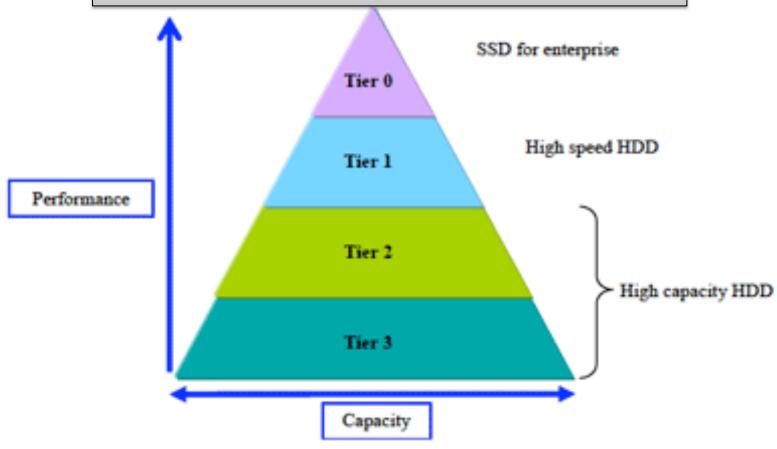
More Capacity

Solid State Storage (Flash) Arrays

Flash DIMM Flash Module SSD SSD (or SSD) Flash Optimized **Traditional** Re-Architect Architected for Storage Systems Controller Controller Flash Disk replace Disk Replace Disk Replace - Virtual Tiering Hybrid Dynamic Dynamic **Tiering Dynamic** Tiering **Tiering**

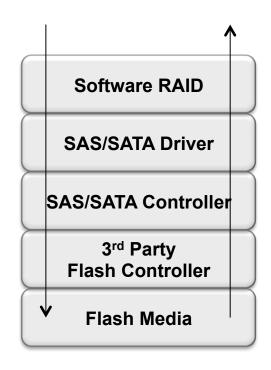
5X-10x

2X


5X

10X

Tiered Storage



HDD Array	CPU 100	I/O 5	CPU 100
	microsec	milli sec	microsec
		(magnitude)	
SDD Array	CPU 100	I/O 500	CPU 100
ODD Allay	microsec	microsec	microsec
All Flash Array	CPU 100	1/0 100	CPU 100
AlliasiiAllay	microsec	micorsec	microsec
Server Side	CPU 100	I/O 25	CPU 100
Caching (PCIe)	microsec	microsec	microsec
		(magnitude)	
Flash DIMM	CPU 100	1/0 100	CPU 100
DMA (Motherboard)	microsec	nanosec	microsec

Solid State Storage I/O Stacks

- New storage system architectures for all solid state
- Internal design to handle memory speed
 - PCle Internally
 - DMA to handle DRAM backup
- Manage technology characteristics
 - writes, cell sparing
 - Done with custom Flash controllers
 - Wear Leveling

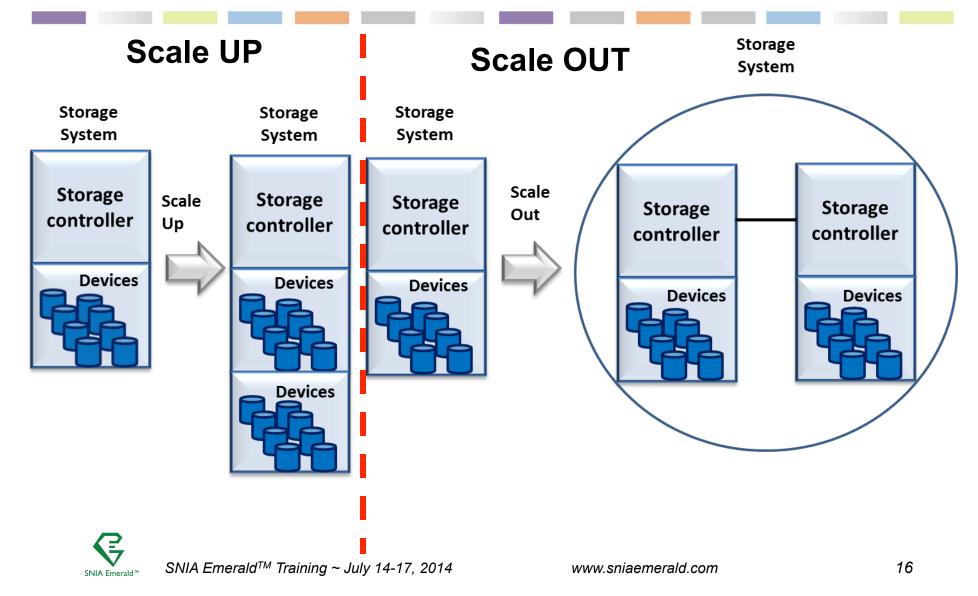
Modern All Flash Arrays vs. HDD Arrays

Modern Flash Arrays

- Wear Leveling
- Garbage collection
- Metadata Management
- Self-healing techniques
- Inline Data deduplication
- Inline Compression
- SSD = 3-5 watts per device
- → Heat = 10 20 BTU/h per device

Traditional HDD Arrays

- Rotational Latency
- Seek Times
- Mechanical parts
- Controllers designed to handle HDD
- HDD = 8-12 watts per drive
- Heat 30 40 BTU/h per drive



Storage Technology SCALE OUT VS SCALE UP

Scale Out vs. Scale Up

Scale Out Storage: NAS

- Implemented using distributed file system usually
 - Clustered hardware
 - Global namespace across nodes
- Key implementation points
 - Linkage between nodes InfiniBand, Ethernet:10Gb
 - I/O balancing between nodes
 - Capacity balancing between nodes
 - Coherency across distance
 - Switching requirements

Scale Out Storage: Block Storage

- Two approaches used
- Multiple controller cards to common backend storage device pools
 - Backplane connected typically
 - Normally associated with high-end enterprise systems
- Federation of separate controller nodes (included with NAS systems in some cases as integrated unified storage)
 - Complexities in cache coherency and I/O routing
 - Vendor differences

Storage Technology

DATA SERVICES

Considerations for Solid State Storage Arrays

Data Services Management

Data Reduction

- Deduplication
- Compression
- Thin Provisioning

Replication

- Local (writable)
- Remote (Future)

Management

- Non-disruptive upgrades
- REST APIs

Investment Protection

Self-healing techniques (Reliability)

Hardware Redundancy (Availability)

Serviceability

Support

Hypervisor

- VMware vSphere
- MS Hyper V

Scale out and Clustering

Application & OS

Storage Technology

REPLICATION

Why Replicate Data?

- Migrate data at same or different location
 - New technology or added capacity
 - Consolidations
 - Mergers
 - Workload balancing
- Application testing
- Data exchange for warehousing / mining
- Business continuance, Disaster Recovery, Data Protection
 - Motivated by:
 - > Business economics
 - RPO and RTO

> Legal requirements

Replication Technologies

Point-in-Time Copy – Snapshot / Flashcopy

- Space efficient copy only changed data
- Variations in storage system implementations

Remote replication

- Synchronous continuous transfer of all data changed, operations wait until transfer completes
- Asynchronous data sent but operation continues without waiting for transfer completion
- Asynchronous periodic data sent periodically, most often is incremental snapshot

Types of Point-in-Time Copy

Snapshot

- Copy-on-write only changed data is copied
- Redirect-on-write writes to new location
- Various implementations use pointer manipulations, side files, or dynamically allocated space from storage pool

Cloning

- Makes a complete copy of data
- Clone may be continuous or split and later resynced
- Variations are differentiation points for vendors

Remote Copy Approaches

Synchronous

- Storage system-based or through fabric appliance
- Data must be stored at remote site before application can resume
 - > Significant impact on performance limits distance
- Application stops if I/O can't complete
 - May stall application

Asynchronous

- Initially host software based, but system based is now available
- Application continues before data is stored on remote site
- Delayed write represents a window of "risk"
- continuous or periodic transmission of data

Multi-hop or cascading

Combination of synchronous and asynchronous with intermediate storage system

