Aerie: Flexible File-System
Interfaces to Storage-Class Memory

Haris Volos’

Sanketh Nalli, Sankaralingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena,
Michael M. Swift

"HP Labs @WISCONSIN

NNNNNNNNNNNNNNNNNNNNN -MADISON

Storage-Class Memory (SCM)

Flash-backed DRAM Phase-Change Memory

Latency

ns | | HS |

Spin Torque MRAM Resistive RAM Flash

e Persistent

e Short access time BNUAYEIGCKACEMEERUEIES

2

Storage-Class Memory (SCM)

e Persistent
e Short access time

e Byte addressable AN RYERICET YA ol =IS

Me nory
Cont-oller

Accessing SCM today

e Direct user-mode access A
for fast access to data

— Moneta-D, PMFS, Quill,
NV-Heaps, Mnemosyne

+

* File system for sharing
— Shared namespace
— Protection

— Integrity

Does SCM need a kernel FS?

Virtual File System

Disk FS

SCM FS J :
~Constant Variable

latency to SCM rou " — latency to disk

Load/store WSS WSS No standard
interface ! interface

MMU protects g - DMA is not
CPU access protected

Library file systems (libFS)

p N [Exokernel (MIT),
APP Nemesis (Cambridge)]

 Enable implementation flexibility
— Optimize file-system interface semantics
— Optimize operations regarding metadata

195N

L

Aerie libFS in a nutshell

~
J
)
J
)
J

APP APP APP

= ol

LibFS LibFS
(functionality) (layout, logic)

OtherLibFS
(layout, logic)

MH ||au19x

Safely multiplex SCM

195N

MH ||au19x

Aerie libFS in a nutshell

APP

APP

= ol

LibFS
(layout, logic)

OtherLibFS
(layout, logic)

ly multiplex SCM

o |
|/ e

Outline

Motivation: Interface flexibility
Aerie: In-memory library file systems
Evaluation

Conclusion

POSIX File: Expensive abstraction

e Universal abstraction: Everything is a file

— Has generic-overhead cost

Application

POSIX File
(Virtual File System)

Storage Network

File IPC | Socket

10

POSIX File: Expensive abstraction

e Rigid interface and policies
— Has fixed components and costs
— Hinders application-specific customization

Application
Hierarchical Permissions
—
names
Byte 7 UNIX concurrency
streams

semantics

POSIX File: Expensive abstraction

e Rigid interface and policies

— Has fixed components and costs

— Hinders application-specific customization

(VirtuallFile S stem)J

S—

File
Descriptors

Concurrency

control
In-memory state

(Byte streams)

~2.5 us = 25x SCM latency

Motivating Example: Web Proxy

Characteristics

e Flat namespace
 Immutable files

e Infrequent sharing

Motivating Example: Web Proxy

Customizing the file system today

 Modify the kernel
e Add a layer over existing kernel file system

e Use a user-mode framework such as FUSE

Cumbersome options

15

Flexible interfaces more
important than ever

e Software interface overheads handicap fast SCM
* Flexible interface is a must for fast SCM

e Library file systems can help remove generic
software overheads

16

Outline

e Aerie: In-memory library file systems (libFS)
e Evaluation

e Conclusion

Kernel safely multiplexes SCM

e Allocation: Allocates SCM regions (i.e. extents)
e Protection: Keeps track of region access rights

e Addressing: Memory-maps SCM regions

P - E

allocation, protection, addressing

cN

MH I ELE

18

195N

L

Library implements functionality

~

~

APP

r

APP

= ol

LibFS

(layout, logic)

~

r

APP

LibFS

(layout, logic)

OtherLibFS

(layout, logic)

MH ||au19x

allocation, protection, addressing

19

Implementing file-system features

File-system objects

Shared namespace

Protection (access control)

Integrity

20

File-system objects build
on SCM extents

e Collection (or directory) * mFile (or memory file)
— key — object ID (oid) — Offset — data extent ID

—_—_—— e ——— —_—e—ee e, e e, e, e, e, e, — e — — o

extenta (metadata)

' bucket

|
| s REZ
|
|

i bucket

195N

MH ||au19x

Shared namespace

(-)

APP

r

APP

=

LibF

(layout, |

alloc

~

r

APP

= ol

LibFS

(layout, logic)

OtherLibFS
(layout, logic)

protection, addressing

o

N r————"

= W

T e —
L '

XTIIT

A

195N

MH

Shared namespace

[[- [
Ak B BEBE

o BEREED

Decentralize access control via
hardware-enforced permissions

Memory protection
prevents Bob from
accessing Alice’s files

Hardware protection cannot
guarantee integrity

19sn

Integrity via Trusted File Service

4) 4)
APP APP

LibFS LibFS
(layout, logic) (layout, logic)

Trusted
)

Service

MH ||au19x

allocation, protection, addressing

Decentralized architecture

(AP AP
Trusted ?bé
z FS

:m: Update [Metadata

LibFS Server

(layout, logic) (integrity)
Read/
Write

File data Metadata

MH

195N

MH

Reducing communication:
Hierarchical leases + Batching

Lease

Manager
(sharing)

LibFS

Server
(integrity)

2 4
Metadata

Read

File data

Read/

Reducing communication:
Hierarchical leases + Batching

Reducing communication:
Hierarchical leases + Batching

P
Lease
f Manager Jofs
& (sharing)
® > 1
Metadata
Server
(integrity)
‘ Read/
Read/ Write
Write Read

_______________ -

A

I
= File data Jta

Prototype Implementation

Extent APl by Linux 3.2.2 x86-64 kernel
modifications

Communication via loopback RPC

Crash consistency through
— x86 CLFLUSH instruction (cache line flush)
— Redo logging

SCM emulation using DRAM

31

Example: A shared file

LOCK -

ease
L (/common) =
Free Manager LibES

Log blocks (sharing)

2 4
Metadata
server
(integrity)

WRITE

READ (/common)

File data

Example: A shared file

| RELEASE (/shared)

Lease

Manager
(sharing)

y LOCK
(/common)

Server
(integrity)

4
Metadata

read(/common/foo0)

= v

LibFS
LOCK (foo)

EAD (/common
EAD Ucommon)/foo)

A Iif.h‘————-

Wd

File Systems

Functionality: PXFS

POSIX interface:
open/read/write/unlink

Hierarchical namespace

POSIX concurrency
semantics

File byte streams

34

File Systems

Functionality: PXFS

POSIX interface:
open/read/write/unlink

Hierarchical namespace

POSIX concurrency
semantics

File byte streams

Optimization: FlatFS

e Key-value interface:
put/get/erase

* Flat namespace
— Simplifies name resolution

e KV-store concurrency
semantics
— Reduce in-memory state

e Short, immutable files

— Simplify storage allocation

File Systems

APP J

-1

=

Performance Evaluation

 Performance model
— Writes to DRAM + software created delay
— Reads to DRAM

* Configurations
— RamFS: In-memory kernel FS
— Ext4: extdfs + RAM-disk
— LibFS: PXFS and FlatFS

e Filebench workloads: Fileserver, Webserver,
Webproxy

37

Application-workload performance

20

a 11;10% B RamFS
2 15 +—— ext4
UV
29 PXFS
> 3
c — 10 = FlatFs
@
o
3 s 22%
. $9% 3o<yi ¢ L53% (2.1x)
0
Fileserver Webserver Webproxy

e PXFS performs better than kernel-mode FS
e FlatFS exploits app semantics to improve performance

38

Sensitivity to SCM performance:
Webproxy

ERET PXFS
8' =j=cxt4
o —

o =>¢=FlatFS
>

J

o

d

S 1 0 100 1000 10000

Extra software delay (ns)

e Shorter SCM latencies favor
— Direct access via load/store instructions
— Interface specialization

39

Scalability: Webproxy

- 1200
Py

8 1000
¥ 800
‘g 600
S 400
-

o 200
i -

- 0

\\.

5

Threads

10

Machine: Intel
6-core 2-way HT

--PXFS
RamkFS
ext4

“=FlatFS

FlatFS retains its benefits over kernel-mode file systems

Conclusion

e Software interface overheads handicap fast SCM

* Flexible interface is a must for fast SCM

* Aerie: Library file systems help remove generic
overheads for higher performance

— FlatFS improves performance by up to 110%

Thank you! Questions?

41

	Aerie: Flexible File-System Interfaces to Storage-Class Memory
	Storage-Class Memory (SCM)
	Storage-Class Memory (SCM)
	Accessing SCM today
	Does SCM need a kernel FS?
	Library file systems (libFS)
	Aerie libFS in a nutshell
	Aerie libFS in a nutshell
	Outline
	POSIX File: Expensive abstraction
	POSIX File: Expensive abstraction
	POSIX File: Expensive abstraction
	Motivating Example: Web Proxy
	Motivating Example: Web Proxy
	Customizing the file system today
	Flexible interfaces more �important than ever
	Outline
	Kernel safely multiplexes SCM
	Library implements functionality
	Implementing file-system features
	File-system objects build �on SCM extents
	Shared namespace
	Shared namespace
	Decentralize access control via�hardware-enforced permissions
	Hardware protection cannot guarantee integrity
	Integrity via Trusted File Service
	Decentralized architecture
	Reducing communication: Hierarchical leases + Batching
	Reducing communication: Hierarchical leases + Batching
	Reducing communication: Hierarchical leases + Batching
	Prototype Implementation
	Example: A shared file
	Example: A shared file
	File Systems
	File Systems
	File Systems
	Performance Evaluation
	Application-workload performance
	Sensitivity to SCM performance:�Webproxy
	Scalability: Webproxy
	Conclusion

