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Storage-Class Memory (SCM)
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Storage-Class Memory (SCM)

e Persistent
e Short access time
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Accessing SCM today

e Direct user-mode access A
for fast access to data

— Moneta-D, PMFS, Quill,
NV-Heaps, Mnemosyne

+

* File system for sharing
— Shared namespace
— Protection

— Integrity



Does SCM need a kernel FS?
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Library file systems (libFS)

p N [Exokernel (MIT),
APP Nemesis (Cambridge)]

 Enable implementation flexibility
— Optimize file-system interface semantics
— Optimize operations regarding metadata
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Aerie libFS in a nutshell
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Safely multiplex SCM
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Outline

Motivation: Interface flexibility
Aerie: In-memory library file systems
Evaluation

Conclusion



POSIX File: Expensive abstraction

e Universal abstraction: Everything is a file

— Has generic-overhead cost

Application

POSIX File
(Virtual File System)

Storage Network

File IPC | Socket

10



POSIX File: Expensive abstraction

e Rigid interface and policies
— Has fixed components and costs
— Hinders application-specific customization

Application
Hierarchical Permissions
—
names
Byte 7 UNIX concurrency
streams

semantics



POSIX File: Expensive abstraction

e Rigid interface and policies

— Has fixed components and costs

— Hinders application-specific customization

(VirtuallFile S stem)J
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File
Descriptors

Concurrency

control
In-memory state

(Byte streams)

~2.5 us = 25x SCM latency



Motivating Example: Web Proxy

Characteristics

e Flat namespace
 Immutable files

e Infrequent sharing




Motivating Example: Web Proxy




Customizing the file system today

 Modify the kernel
e Add a layer over existing kernel file system

e Use a user-mode framework such as FUSE

Cumbersome options
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Flexible interfaces more
important than ever

e Software interface overheads handicap fast SCM
* Flexible interface is a must for fast SCM

e Library file systems can help remove generic
software overheads
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Outline

e Aerie: In-memory library file systems (libFS)
e Evaluation

e Conclusion



Kernel safely multiplexes SCM

e Allocation: Allocates SCM regions (i.e. extents)
e Protection: Keeps track of region access rights

e Addressing: Memory-maps SCM regions
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Library implements functionality
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Implementing file-system features

File-system objects

Shared namespace

Protection (access control)

Integrity
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File-system objects build
on SCM extents

e Collection (or directory) * mFile (or memory file)
— key — object ID (oid) — Offset — data extent ID
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Shared namespace
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Decentralize access control via
hardware-enforced permissions

Memory protection
prevents Bob from
accessing Alice’s files




Hardware protection cannot
guarantee integrity
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Integrity via Trusted File Service
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Decentralized architecture
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Reducing communication:
Hierarchical leases + Batching
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Reducing communication:
Hierarchical leases + Batching




Reducing communication:
Hierarchical leases + Batching
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Prototype Implementation

Extent APl by Linux 3.2.2 x86-64 kernel
modifications

Communication via loopback RPC

Crash consistency through
— x86 CLFLUSH instruction (cache line flush)
— Redo logging

SCM emulation using DRAM
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Example: A shared file

LOCK -

ease
L (/common) =
Free Manager LibES

Log blocks (sharing)
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File data




Example: A shared file

| RELEASE (/shared)

Lease

Manager
(sharing)

y LOCK
(/common)

Server
(integrity)

4
Metadata

read(/common/foo0)

= v

LibFS
LOCK (foo)

EAD (/common
EAD Ucommon)/foo)
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File Systems

Functionality: PXFS

POSIX interface:
open/read/write/unlink

Hierarchical namespace

POSIX concurrency
semantics

File byte streams
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File Systems

Functionality: PXFS

POSIX interface:
open/read/write/unlink

Hierarchical namespace

POSIX concurrency
semantics

File byte streams

Optimization: FlatFS

e Key-value interface:
put/get/erase

* Flat namespace
— Simplifies name resolution

e KV-store concurrency
semantics
— Reduce in-memory state

e Short, immutable files

— Simplify storage allocation
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Performance Evaluation

 Performance model
— Writes to DRAM + software created delay
— Reads to DRAM

* Configurations
— RamFS: In-memory kernel FS
— Ext4: extdfs + RAM-disk
— LibFS: PXFS and FlatFS

e Filebench workloads: Fileserver, Webserver,
Webproxy
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Application-workload performance
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e PXFS performs better than kernel-mode FS
e FlatFS exploits app semantics to improve performance
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Sensitivity to SCM performance:
Webproxy
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e Shorter SCM latencies favor
— Direct access via load/store instructions
— Interface specialization
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Scalability: Webproxy
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FlatFS retains its benefits over kernel-mode file systems



Conclusion

e Software interface overheads handicap fast SCM

* Flexible interface is a must for fast SCM

* Aerie: Library file systems help remove generic
overheads for higher performance

— FlatFS improves performance by up to 110%

Thank you! Questions?
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