
Aerie: Flexible File-System
Interfaces to Storage-Class Memory

Haris Volos†
Sanketh Nalli, Sankaralingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena,

Michael M. Swift

HP Labs †

• Persistent
• Short access time

 2

Software overhead matters

Storage-Class Memory (SCM)
Flash-backed DRAM

Flash

Phase-Change Memory

Spin Torque MRAM Resistive RAM

ns μs

Latency

3

Memory
Controller

SCM DRAM

Storage-Class Memory (SCM)

• Persistent
• Short access time
• Byte addressable

Accessible via loads/stores

No software
overhead

• Direct user-mode access
for fast access to data
– Moneta-D, PMFS, Quill,

NV-Heaps, Mnemosyne

• File system for sharing

– Shared namespace
– Protection
– Integrity

4

OS/
File System

Application

Accessing SCM today

+

Device Driver Device Driver

Generic Block Layer

I/O Scheduler

SCM FS

App

Virtual File System

App

Disk FS

I/O Bus

Does SCM need a kernel FS?

5

MMU protects
CPU access

DMA is not
protected

Variable
latency to disk

~ Constant
latency to SCM

Load/store
interface

No standard
interface

SCM Disk

• Enable implementation flexibility
– Optimize file-system interface semantics
– Optimize operations regarding metadata

Library file systems (libFS)

6

APP

LibFS
API

[Exokernel (MIT),
 Nemesis (Cambridge)]

Aerie libFS in a nutshell

7

APP

LibFS
(functionality)

Safely multiplex SCM

U
ser

Kernel
HW

API

APP

LibFS
(layout, logic)

API

APP

OtherLibFS
(layout, logic)

API

APP APP

LibFS
(layout, logic)

API

APP

OtherLibFS
(layout, logic)

API

Safely multiplex SCM

8

API

U
ser

HW

/

common bob alice

common alice bob /

Aerie libFS in a nutshell

open

Kernel

Outline

• Overview
• Motivation: Interface flexibility
• Aerie: In-memory library file systems
• Evaluation
• Conclusion

9

• Universal abstraction: Everything is a file
– Has generic-overhead cost

10

Application

POSIX File
(Virtual File System)

Storage
File IPC Network

Socket

POSIX File: Expensive abstraction

• Rigid interface and policies
– Has fixed components and costs
– Hinders application-specific customization

11

Application

POSIX File
(Virtual File System)

UNIX concurrency
semantics

Hierarchical
names

Byte
streams

Permissions

POSIX File: Expensive abstraction

POSIX File: Expensive abstraction

• Rigid interface and policies
– Has fixed components and costs
– Hinders application-specific customization

Application

POSIX File
(Virtual File System)

open() Syscall
Naming +
Permissions

In-memory state
(Byte streams)

Concurrency
control

File
Descriptors

~ 2.5 μs ≈ 25x SCM latency

File System

Motivating Example: Web Proxy

13

Web Proxy Cache

/cache

Characteristics
• Flat namespace
• Immutable files
• Infrequent sharing

Motivating Example: Web Proxy

14

Web Proxy Cache

Proxy FS POSIX FS

Customizing the file system today

• Modify the kernel

• Add a layer over existing kernel file system

• Use a user-mode framework such as FUSE

15

Cumbersome options

• Software interface overheads handicap fast SCM

• Flexible interface is a must for fast SCM

• Library file systems can help remove generic
software overheads

16

Flexible interfaces more
important than ever

Outline

• Overview
• Motivation: Interface flexibility
• Aerie: In-memory library file systems (libFS)
• Evaluation
• Conclusion

17

Kernel safely multiplexes SCM

18

allocation, protection, addressing

Kernel
HW

• Allocation: Allocates SCM regions (i.e. extents)

• Protection: Keeps track of region access rights

• Addressing: Memory-maps SCM regions

<extent>

Library implements functionality

19

APP

LibFS
(layout, logic)

allocation, protection, addressing

U
ser

Kernel
HW

API

APP

LibFS
(layout, logic)

API

APP

OtherLibFS
(layout, logic)

API

Implementing file-system features

• File-system objects

• Shared namespace

• Protection (access control)

• Integrity

20

File-system objects build
on SCM extents

• Collection (or directory)
– key → object ID (oid)

• mFile (or memory file)
– Offset → data extent ID

21

Shared namespace

22

APP

LibFS
(layout, logic)

allocation, protection, addressing

U
ser

Kernel
HW

API

APP

LibFS
(layout, logic)

API

APP

OtherLibFS
(layout, logic)

API

common alice bob /

23

APP

libFS

U
ser

HW

APP

/

common bob alice

/

common bob alice

common alice bob /

Shared namespace

libFS

open

24

APP

libFS

U
ser

HW

APP

common alice bob /

Decentralize access control via
hardware-enforced permissions

libFS
/

common bob alice

/

common bob alice Memory protection
prevents Bob from
accessing Alice’s files

25

APP

libFS

U
ser

HW

APP

libFS
/

shared alice

alice bob /

Hardware protection cannot
guarantee integrity

common

/

common bob

foo

bar

Trusted
FS

Service
(TFS)

26

APP

LibFS
(layout, logic)

API

U
ser

Kernel
HW

APP

LibFS
(layout, logic)

API

Integrity via Trusted File Service

allocation, protection, addressing

27

HW

SCM

APP

LibFS
API

File data Metadata

Read/
Write Read

Read/
Write

APP

LibFS
(layout, logic)

API

U
ser

Trusted
FS

Service
(TFS)

Metadata
Server
(integrity)

Update

Decentralized architecture

RPC

28

U
ser

HW

SCM

APP

LibFS
API

File data Metadata

Read/
Write Read

Read/
Write

APP

API

Trusted
FS

Service
(TFS)

Metadata
Server
(integrity)

Lease
Manager

(sharing) Log
Update

Reducing communication:
Hierarchical leases + Batching

RPC

29

U
ser

HW

SCM

APP

LibFS
API

File data Metadata

Read/
Write Read

Read/
Write

APP

API

Trusted
FS

Service
(TFS)

Metadata
Server
(integrity)

Lease
Manager

(sharing) Log
Free
blocks

Update

Reducing communication:
Hierarchical leases + Batching

RPC

common

adjust

Contention

30

U
ser

HW

SCM

APP

LibFS
API

File data Metadata

Read/
Write Read

Read/
Write

APP

API

Trusted
FS

Service
(TFS)

Metadata
Server
(integrity)

Lease
Manager

(sharing) Log
Free
blocks

Update

Reducing communication:
Hierarchical leases + Batching

RPC

Prototype Implementation

• Extent API by Linux 3.2.2 x86-64 kernel
modifications

• Communication via loopback RPC
• Crash consistency through

– x86 CLFLUSH instruction (cache line flush)
– Redo logging

• SCM emulation using DRAM

31

32

HW

SCM

APP

LibFS
libFS

File data Metadata

WRITE
READ (/common)

APP

 Trusted
FS

Service
(TFS)

Metadata
Server
(integrity)

Lease
Manager

(sharing) Log
Free
blocks

Example: A shared file

creat(/common/foo) LOCK
(/common)

CreateFile

LinkBlock

write(...)

RPC

33

HW

SCM
File data Metadata

RELEASE (/shared)

Trusted
FS

Service
(TFS)

Metadata
Server
(integrity)

Lease
Manager

(sharing)

Example: A shared file

LOCK
(/common)

APP

LibFS
libFS

APP

 LibFS

read(/common/foo)

READ (/common/foo)
READ (/common)

API
RPC

LOCK (foo)

File Systems

Functionality: PXFS
• POSIX interface:

open/read/write/unlink
• Hierarchical namespace
• POSIX concurrency

semantics
• File byte streams

34

File Systems

Functionality: PXFS
• POSIX interface:

open/read/write/unlink
• Hierarchical namespace
• POSIX concurrency

semantics
• File byte streams

Optimization: FlatFS
• Key-value interface:

put/get/erase
• Flat namespace

– Simplifies name resolution

• KV-store concurrency
semantics
– Reduce in-memory state

• Short, immutable files
– Simplify storage allocation

35

File Systems

36

PXFS

APP

FlatFS

APP

Performance Evaluation

• Performance model
– Writes to DRAM + software created delay
– Reads to DRAM

• Configurations
– RamFS: In-memory kernel FS
– Ext4: ext4fs + RAM-disk
– LibFS: PXFS and FlatFS

• Filebench workloads: Fileserver, Webserver,
Webproxy

37

Application-workload performance

0

5

10

15

20

Fileserver Webserver Webproxy

La
te

nc
y

pe
r o

p

 (
μs

)

RamFS

ext4

PXFS

FlatFS

38

• PXFS performs better than kernel-mode FS
• FlatFS exploits app semantics to improve performance

10%

9%
22%

53% (2.1x) 30%

1

10

La
te

nc
y

pe
r o

p
 (
μs

)

PXFS

ext4

FlatFS

Sensitivity to SCM performance:
Webproxy

• Shorter SCM latencies favor
– Direct access via load/store instructions
– Interface specialization

39

0 100 1000 10000
Extra software delay (ns)

Scalability: Webproxy

0
200
400
600
800

1000
1200

0 5 10

Th
ro

ug
hp

ut
 (K

op
s/

s)

Threads

PXFS
RamFS
ext4
FlatFS

• FlatFS retains its benefits over kernel-mode file systems

Machine: Intel
6-core 2-way HT

• Software interface overheads handicap fast SCM

• Flexible interface is a must for fast SCM

• Aerie: Library file systems help remove generic
overheads for higher performance
– FlatFS improves performance by up to 110%

41

Conclusion

Thank you! Questions?

	Aerie: Flexible File-System Interfaces to Storage-Class Memory
	Storage-Class Memory (SCM)
	Storage-Class Memory (SCM)
	Accessing SCM today
	Does SCM need a kernel FS?
	Library file systems (libFS)
	Aerie libFS in a nutshell
	Aerie libFS in a nutshell
	Outline
	POSIX File: Expensive abstraction
	POSIX File: Expensive abstraction
	POSIX File: Expensive abstraction
	Motivating Example: Web Proxy
	Motivating Example: Web Proxy
	Customizing the file system today
	Flexible interfaces more �important than ever
	Outline
	Kernel safely multiplexes SCM
	Library implements functionality
	Implementing file-system features
	File-system objects build �on SCM extents
	Shared namespace
	Shared namespace
	Decentralize access control via�hardware-enforced permissions
	Hardware protection cannot guarantee integrity
	Integrity via Trusted File Service
	Decentralized architecture
	Reducing communication: Hierarchical leases + Batching
	Reducing communication: Hierarchical leases + Batching
	Reducing communication: Hierarchical leases + Batching
	Prototype Implementation
	Example: A shared file
	Example: A shared file
	File Systems
	File Systems
	File Systems
	Performance Evaluation
	Application-workload performance
	Sensitivity to SCM performance:�Webproxy
	Scalability: Webproxy
	Conclusion

