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• Persistent 
• Short access time 

 2 

Software overhead matters 

Storage-Class Memory (SCM) 
Flash-backed DRAM 
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Memory 
Controller 

SCM DRAM 

Storage-Class Memory (SCM) 

• Persistent 
• Short access time 
• Byte addressable 

 
Accessible via loads/stores 

No software 
overhead 



• Direct user-mode access 
for fast access to data 
– Moneta-D, PMFS, Quill, 

NV-Heaps, Mnemosyne 

 
• File system for sharing 

– Shared namespace 
– Protection 
– Integrity 
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OS/ 
File System 

Application 

Accessing SCM today 

+ 



Device Driver Device Driver 

Generic Block Layer 

I/O Scheduler 

SCM FS 

App 

Virtual File System 

App 

Disk FS 

I/O Bus 

Does SCM need a kernel FS?  
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MMU protects 
CPU access 

DMA is not 
protected  
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latency to disk 

~ Constant 
latency to SCM 

Load/store 
interface 

No standard 
interface 

SCM Disk 



• Enable implementation flexibility 
– Optimize file-system interface semantics 
– Optimize operations regarding metadata 

Library file systems (libFS) 
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APP 

LibFS  
API 

[Exokernel (MIT), 
 Nemesis (Cambridge)] 



Aerie libFS in a nutshell 
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Safely multiplex SCM 
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Aerie libFS in a nutshell 

open 

Kernel 



Outline 

• Overview 
• Motivation: Interface flexibility 
• Aerie: In-memory library file systems 
• Evaluation 
• Conclusion 
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• Universal abstraction: Everything is a file 
– Has generic-overhead cost 
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Application 

POSIX File 
(Virtual File System) 

Storage 
File IPC Network 

Socket 

POSIX File: Expensive abstraction 



• Rigid interface and policies 
– Has fixed components and costs 
– Hinders application-specific customization 
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Application 

POSIX File 
(Virtual File System) 

UNIX concurrency  
semantics 

Hierarchical 
names 
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streams 
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POSIX File: Expensive abstraction 



POSIX File: Expensive abstraction 

• Rigid interface and policies 
– Has fixed components and costs 
– Hinders application-specific customization 

 
 
 
 

Application 

POSIX File 
(Virtual File System) 

open() Syscall 
Naming + 
Permissions 

In-memory state 
(Byte streams) 

Concurrency 
control 

File  
Descriptors 

~ 2.5 μs ≈ 25x SCM latency 



File System 

Motivating Example: Web Proxy 
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Web Proxy Cache 

/cache 

Characteristics 
• Flat namespace 
• Immutable files 
• Infrequent sharing 



Motivating Example: Web Proxy 
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Web Proxy Cache 

Proxy FS POSIX FS 



Customizing the file system today 

• Modify the kernel 
 

• Add a layer over existing kernel file system 
 
• Use a user-mode framework such as FUSE 

 
 

15 

Cumbersome options 



• Software interface overheads handicap fast SCM 
 

• Flexible interface is a must for fast SCM 
 

• Library file systems can help remove generic 
software overheads 
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Flexible interfaces more  
important than ever 



Outline 

• Overview 
• Motivation: Interface flexibility 
• Aerie: In-memory library file systems (libFS) 
• Evaluation 
• Conclusion 
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Kernel safely multiplexes SCM 
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allocation, protection, addressing 

Kernel 
HW

 

• Allocation: Allocates SCM regions (i.e. extents) 
 

• Protection: Keeps track of region access rights 
 

• Addressing: Memory-maps SCM regions 

<extent> 



Library implements functionality 
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Implementing file-system features 

• File-system objects 
 

• Shared namespace 
 

• Protection (access control) 
 

• Integrity 
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File-system objects build  
on SCM extents 

• Collection (or directory) 
– key → object ID (oid) 

• mFile (or memory file) 
– Offset → data extent ID 
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Shared namespace 
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APP 
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common alice bob / 

Decentralize access control via 
hardware-enforced permissions 

libFS 
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common bob alice 

/ 

common bob alice Memory protection 
prevents Bob from 
accessing Alice’s files 
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Trusted 
FS 

Service 
(TFS) 
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Prototype Implementation 

• Extent API by Linux 3.2.2 x86-64 kernel 
modifications 

• Communication via loopback RPC 
• Crash consistency through 

– x86 CLFLUSH instruction (cache line flush) 
– Redo logging 

• SCM emulation using DRAM  
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File Systems 

Functionality: PXFS 
• POSIX interface: 

open/read/write/unlink 
• Hierarchical namespace 
• POSIX concurrency 

semantics 
• File byte streams 

34 

 



File Systems 

Functionality: PXFS 
• POSIX interface: 

open/read/write/unlink 
• Hierarchical namespace 
• POSIX concurrency 

semantics 
• File byte streams 

Optimization: FlatFS 
• Key-value interface: 

put/get/erase 
• Flat namespace 

– Simplifies name resolution 

• KV-store concurrency 
semantics 
– Reduce in-memory state 

• Short, immutable files 
– Simplify storage allocation 
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File Systems 
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PXFS 

APP 

FlatFS 
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Performance Evaluation 

• Performance model 
– Writes to DRAM + software created delay 
– Reads to DRAM 

• Configurations 
– RamFS: In-memory kernel FS 
– Ext4: ext4fs + RAM-disk 
– LibFS: PXFS and FlatFS 

• Filebench workloads: Fileserver, Webserver, 
Webproxy 
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Application-workload performance 

0

5

10

15

20

Fileserver Webserver Webproxy

La
te

nc
y 

pe
r o

p 
 

 ( 
μs

 ) 

RamFS

ext4

PXFS

FlatFS

38 

• PXFS performs better than kernel-mode FS 
• FlatFS exploits app semantics to improve performance  
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Sensitivity to SCM performance: 
Webproxy 

• Shorter SCM latencies favor  
– Direct access via load/store instructions 
– Interface specialization 
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Scalability: Webproxy 
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• FlatFS retains its benefits over kernel-mode file systems 
 

Machine: Intel 
6-core 2-way HT 



• Software interface overheads handicap fast SCM 
 

• Flexible interface is a must for fast SCM 
 

• Aerie: Library file systems help remove generic 
overheads for higher performance 
– FlatFS improves performance by up to 110% 
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Conclusion 

Thank you! Questions? 
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