

Private Cloud Storage Management using SMI-S, Windows Server, and System Center

Hector Linares Principal Program Manager <u>hectorl@microsoft.com</u> Microsoft Rajesh Balwani Senior Development Engineer <u>rbalwani@microsoft.com</u> Microsoft

Customer Pain Points System Center Overview SAN and NAS Management Private Cloud Storage Provisioning Fibre Channel Fabric Management Applications with FC Storage

No automation. I have to wait for someone else to provision storage that I need for a deployment.

Targeted automation. My company invests in storage automation primarily to reduce human error

SD @

2014 Storage Developer Conference. © Microsoft. All Rights Reserved.

86%

4%

No automation. I do not have the expertise to automate storage operations

No automation. I am in API overload. Datacenter contains multiple arrays each with a different API surface.

V.V.T.A.L.

50%

SD @

SAN Management

SAN (SMI-S)

Discovery array, pool, storage volume, initiators, targets, masking sets Create/delete storage pool, storage volume, snapshot clone

Hyper-V Server

Discovery of FC and IQN ports Connect array to server (zoning, initiator logon)

Virtual Machine

Connect array to server (zoning, initiator logon) Unmask/mask storage volume to VM

Add Storage Array Provider

\$raa = Get-SCRunAsAccount -Name "NTAP"

Add-SCStorageProvider -Name "NETAPPSMI" -RunAsAccount \$raa -NetworkDeviceName "http://NETAPPSMI.CONTOSO.LAB" -TCPPort 5988

Interop namespace objects

* Make sure key properties are filled up appropriately. This diagram shows properties that "Windows Standards-Based Storage Management service" requires.

* Make sure key properties are filled up appropriately. This diagram shows properties that "Windows Standards-Based Storage Management service" requires.

'_____

Endpoints Discovery at Level 1

StorageHardwareIDs Discovery at Level 1

* Make sure key properties are filled up appropriately. This diagram shows properties that "Windows Standards-Based Storage Management service" requires.

Manage Storage Pool

\$pool = Get-SCStoragePool -Name "vol2"
\$classification = Get-SCStorageClassification -Name "HI-IOPS"
Set-SCStorageArray \$pool.StorageArray -AddStoragePoolToManagement \$pool
-StorageClassificationAssociation \$classification

StorageVolumes Discovery at Level 2

* Make sure key properties are filled up appropriately. This diagram shows properties that "Windows Standards-Based Storage Management service" requires.

Make sure key properties are filled up appropriately. This diagram shows properties that "Windows Standards-Based Storage Management service" requires.

List Storage Volumes

(Get-SCStorageLogicalUnit | where {\$_.StoragePool -eq \$pool})[0]

Classification	1,945.60 GB
Storage pool	1,945.60 GB
Logical unit	100.00 GB
Logical unit	100.00 GB
Logical unit	10.00 GB
Logical unit	10.00 GB
Logical unit	4,096.00 GB
Logical unit	4,096.00 GB
Logical unit	4,096.00 GB
Logical unit	4,096.00 GB
Logical unit	4,096.00 GB
	Storage pool Logical unit Logical unit

SMName	: b2c70854-874c-11e2-a2e0-123478563412
SMLunId	: 600a09802d655533655d43423570646d
SMLunIdFormat	: 9
SMLunIdFormatDescription	: NAA
SMLunIdNamespace	: 2
SMLunIdNamespaceDescription	: VPD83Type3
TotalCapacity	: 107374182400
StoragePool	: vol2
Classification	: HI-IOPS
StorageGroups	: {vmmlab1823n3}

SAN and NAS Management

Storage Management API (SMAPI)

Architecture

VMM Server

SD⁽²⁾

Private Cloud Storage Provisioning

Storage Classification

Assign Classification to Storage

Create multiple classifications Classify discovered storage pool, disk, and file share Storage classification inheritance

Streamline VM Deployment

Express storage intent in templates Placement is classification aware

Differentiate Capacity in Multi-Tenant Environment

Create clouds with specific classification

Self-service users restricted to allocated storage based on classification

Storage Pool Classification

Storage Pool Discovery

x Β New Classification Specify protocol and address of the storage SMI-S provider Select storage pools to place under management and assign a classification Logical unit information will be imported from the selected storage pools. The assigned classification describes the capabilities of the selected storage pools. Storage Device Pool ID Classification Total Capacity | Available Capacity myCloud 4,747.26 GB 2,508.31 GB ONTAP:d6696a7c-5c16-11e2. Gold ✓ vol1 • 2,801.66 GB 723.36 GB Nuri As accounts View Script Add Cancel

Inherited Classification

2014 Storage Developer Conference. © Microsoft. All Rights Reserved.

LUN3 (GOLD)

Storage Disk Classification

Allocate Storage to Cloud

Cloud Scope	Template Scope	Instance Scope
No classification assigned to cloud	All classifications available on host group	Placement selected storage based on available capacity
Gold classification assigned to cloud	Limited to Gold classification	Placement selected Gold storage with available capacity
Gold and Silver classification assigned to cloud	Gold and Silver classification available	Placement selected storage based on selection in template and available capacity

File Share Classification

Select file shares to place under management

Logical unit information will be imported from the selected storage pools. All physical disk information will be imported. Classification is required for storage pools. File share classification is optional. File shares without classification will get a default classification.

Storage Device	Classification	Total Capacity	Available Capacity
Clustered Storage Spaces on VMMR2RTMSTOR		20,476.25 GB	20,409.75 GB
✓ TENADemoPool	SDS 🔻	20,476.25 GB	20,409.75 GB
vmmr2rtmsofs.dcmanager.lab		20.00 GB	19.79 GB
VMStore01	•	10.00 GB	9.90 GB
VMStore02	•	10.00 GB	9.90 GB

Inherited Classification Share1 Assign SDS Share2 Pool1 (SDS) neoundancy: 4 Share3 SDS Classification: New... ✓ File share managed by Virtual Machine Manager (SDS)

Fibre Channel Fabric Management

Topologies

Storage Management API (SMAPI)

Manage FC Fabric

\$provider = Get-SCStorageProvider -Name "DCMRRSMISCISCO"
\$fabric = Get-SCStorageFabric -Name "2002547FEE79EE81"
\$classification = New-SCStorageFabricClassification -Name "PRODUCTION"
Set-SCStorageFabric -EnableManagement -StorageFabric \$fabric -StorageFabricClassification
\$classification

Storage Fabric Classification

Create Zone and Add Members (VMM)

```
#add list of zone members
$zoneset_newZone = Get-
SCStorageZoneSet -Name "Active"
$newZone = New-SCStorageZone -Name
"MyZone" -StorageZoneSet
$zoneset_newZone -
AddZoneMembership
@("21240002AC000C63",
"20230002AC000C63",
"10000000C9C17FCA",
"10000000C9C17FCB")
```

Create new zone for dcmrr25r19n08.dcmanager.lab

Any changes will be committed to the inactive zoneset and will not be effective until zoneset activation.

Zone name:	MyZone			
Storage array:	DCMRRSAN_HP3PAR_01			
Fabric:	1000005338C8BBA			
Storage array target ports:				
World Wide Port Name				
✓ 21240002AC000C63				
✓ 20230002AC000C63				
Virtual machin	e initiator ports:			
World Wide P	ort Name			
☑ 1000000C9C17FCA				
✓ 1000000C9C17FCB				

Activate Zoneset (VMM)

```
#Activate zoneset
If($zoneset_newZone.Active -eq $false)
{
    Set-SCStorageZoneSet -StorageZoneSet $zoneset_newZone -Enable
}
```


Applications with FC Storage

Problem Statement

Multi-tier application that requires a SQL database deployed on a failover cluster with shared FC storage from a SAN

Application Environment Details

Fibre Channel Switches

Dual redundant fabrics between hosts and storage

Hyper-V Host

Hosts with at least 2 FC ports Connect each FC port to a different fabric Create a virtual SAN per fabric

SQL Tier Service deployment

Partnerships

Storage Manageability Certification

VMM

SD @

Thank you!

Hector Linares Principal Program Manager <u>hectorl@microsoft.com</u> Microsoft Rajesh Balwani Senior Development Engineer <u>rbalwani@microsoft.com</u> Microsoft

MASKING and MAPPING IN-DEPTH

MASKING IN-DEPTH

SCSI Protocol Controller

- a.k.a. Storage Groups
- a.k.a. Masking Sets
- a.k.a. Host Groups
- 🗖 a.k.a. View
- Ports Per View
 - Array target ports
- One Hardware ID Per View
 - Server initiator ports

SCSI Protocol Controller

- SCSI protocol controller (SPC) is a grouping mechanism on the array using for exposing a storage volume (LUN) to a Windows server
- SPC contains target ports (array), storage volumes (LUN), initiator ports (Windows host)

Ports per SPC

- Controls how many array target ports an SPC can have
 - All Ports Share Same View All targets ports in SPC
 - Multiple Ports Per View one, some or all target ports in SPC
 - One Port Per view one target port in SPC

All Ports Share Same SPC

□ SPC includes all of the target ports on the array

Multiple Ports per SPC

SPC includes all, some, or one of the target ports on the array

One Port per SPC

SPC includes only one target port on the array

Ports per SPC

Setting	Implementation Notes	Examples
All Ports Share Same View	Simplicity	NetApp FAS HP EVA EMC Clariion Dell Compellent
Multiple Ports Per View	Flexibility (can mimic both One Port per View and All Ports Share Same View)	EMCVMAX HP 3PAR
One Port Per View	Traditional	Hitachi VSP HP P2000 Hitachi AMS

One Hardware ID per SPC

One Hardware ID per SPC == True

One Hardware ID per SPC == False

One Hardware ID per SPC

Setting	Implementation Notes	Examples
TRUE	Traditional	Hitachi AMS HP P2000 Dell Compellent
FALSE	Flexibility (allows for one SPC per cluster)	EMC VMAX, Clariion IBM XIV, SVC, V7000 HP EVA, 3Par NetApp FAS Hitachi VSP

SPC Creation for Clusters

- Create SPCs per Cluster == True
 - Creates storage groups that contains all initiator ports for all nodes in the cluster

Create SPCs per Cluster== False

Creates a storage group that contain all initiator ports for each node in the cluster

SPC Creation for Clusters

Setting	Implementation Notes	Examples
TRUE	On some arrays, unmasking operations get serialized so the time required to unmask a LUN to multiple nodes in the cluster increases (minutes) No flexibility to have a separate LUN for boot from SAN	EMC VMAX Hitachi VSP
FALSE	Offers the most flexibility if you want to expose LUNs to a subset of nodes in the cluster (e.g. to enable boot from SAN).	NetApp FAS HP 3AR Dell Compellent

	All Ports Share Same SPC	Multiple Ports Per SPC	One Port Per SPC
One Hardware ID Per SPC == FALSE	Create SPCs per Cluster == True or False	Create SPCs per Cluster == True or False	Create SPCs per Cluster == True or False
One Hardware ID Per SPC == TRUE	Create SPCs per Cluster – Not Applicable	Create SPCs per Cluster - Not Applicable	Create SPCs per Cluster - Not Applicable

- □ All/Multi Ports per SPC
- One Hardware ID per SPC ==
 False
- Create SPCs per Cluster ==
 True

- □ All/Multi Ports per SPC
- One Hardware ID per SPC ==
 False
- Create SPCs per Cluster ==
 False

- **One** Port per SPC
- Create SPCs per Cluster == **True**

- All/Multi Ports per SPC
- One Hardware ID per SPC == True
- Create SPCs per Cluster N/A

- One Ports per SPC
- One Hardware ID per SPC == True
- Section Create SPCs per Cluster N/A

SD[®]

ISCSI Target Models

Masking/Mapping depends on Target model Types of target models

Static

Targets are static as fiber channel targets usually one per Ethernet port or pre setup. #of static iscsi targets won't change for life time of array unless there configuration change.

• Dynamic

Targets are dynamic. Two type of

dynamic target systems.

Automatic

Targets are created automatically one per volume upon volume creation.

Manual

Targets can be created by user based as they need.

ISCSI Target Model Discovery

Using ISCSI Configuration Service Capabilities Static target model

Absence of iscsi configuration capabilities instance or following values would be discovered as static target model.

iscsiConfigurationCapabilitiesInstance->ISCSIProtocolEndpointCreationSupported = false iscsiConfigurationCapabilitiesInstance->ISCSINodeCreationSupported = false

Automatic target model

iscsiConfigurationCapabilitiesInstance->ISCSIProtocolEndpointCreationSupported = true iscsiConfigurationCapabilitiesInstance->ISCSINodeCreationSupported = false

Manual target model

iscsiConfigurationCapabilitiesInstance->ISCSIProtocolEndpointCreationSupported = false iscsiConfigurationCapabilitiesInstance->ISCSINodeCreationSupported =

ISCSI Masking

Static target model

Mask/unmask same as Fiber channel target ports described earlier i.e. depends on PortsPerView, OneHardwareIDPerView and MaxMapCount properties. VMM expects iscsi login as precheck for provisioning which can be automated as part of array onboarding per host.

Automatic target model

ISCSI targets are 1:1 to volume hence one SPC per volume i.e. volume is key for SPC. Masking is nothing but adding and removing initiators from SPC.

SPC is created by VMM upon first time volume is unmasked, provider needs to establish its association with specific target automatically. VMM will issue ISCSI login/logoff per target upon provisioning.

Manual target model

Provides flexibility to create targets as needed. SMAPI doesn't expose target creation api's. Solution is for provider to create target automatically per SPC creation from VMM. Here initiators become key for SPC. Once SPC created masking is nothing but adding removing volumes from SPC. VMM issues iscsi login/logoff upon provisioning.

Masking capabilities not per protocol

This could be tricky for arrays which implement different target models for iscsi vs fiber channel. For example FC is static target system where as ISCSI is dynamic target system.

Some workaround available. To mitigate VMM relies on ISCSI configuration capabilities for ISCSI before looking into Masking capabilities. However some combinations may not work

Automatic target model not scalable.

Since there is 1:1 SPC per volume system could end up with too many SPCs potentially max number of volumes. This causes scalability and performance issues not only from provider but also from host initiator.

Group Masking

Basically group masking allows SPC to be associated with initiator group, volume group and port group. These groups can be nested.

Support for group masking with following limitations

Only single level groups are supported i.e. nested groups not supported.

New initiator group and volume group are automatically created per spc creation and destroyed as spc goes away.

Target port group are not created automatically. This needs to be created out of band. This is done to facilitate reuse of target port groups.

Recommendation

Use masking/mapping profile as all scenarios can be addressed with this.

