

Emerging storage and HPC technologies to accelerate big data analytics

Jerome Gaysse JG Consulting

Introduction

- Big Data Analytics needs:
 - Low latency data access
 - Fast computing
 - Power efficiency
- Latest and emerging technologies
 - Memories
 - Interfaces
 - Controllers
 - New generation of SSDs

2

Big Data Analytics

- Standard approach
 - Data stored in HDD
 - Data transferred to DRAM memory
 - Processed by the server CPUs
- Drawbacks
 - HDD is slow
 - DRAM is non-volatile
 - CPU is not power efficient

Memories

- New memory technologies
 - NandFlash
 - Magnetic
 - Resistive

Memories - Nandflash

- Already used in data centers (SSD)
- Various interfaces (SAS, SATA, PCIe)
- Benefits:
 - Faster than HDD (few GB/s on a PCIe SSD)
 - Low latency 20-50µs
- Higher \$/GB, but need less infrastructure: a 1u all-flash array can deliver the same performances a 42U rack

Memories - Magnetic

- MRAM Memory
 - MRAM memory chips in production, but low density (256Mbit chips)
 - Available as chip and DIMM form factor
 - Benefits
 - Non volatile
 - ☐ Fast memory: DDR-like interface

Memories - Resistive

- RRAM
 - In development
 - Benefits
 - □ Non-volatile
 - □ High density: roadmap to 1 TB/chip
 - □ Faster than Nandflash, slower than MRAM
- □ Phase-Change Memory (PCM)
 - Technology demonstrator existing
 - 1µs latency range on a PCIe SSD

Interfaces & subsystem

A fast CPU with a fast memory technologies are not useful with a slow interface!

- Interfaces improvement
 - PCIe & NVMe
 - Memory bus & DIMM
 - **CAPI**

Interfaces & subsystem – PCIe SSD

■ NVMe

- NVM Express is an optimized, high performance, scalable host controller interface with a streamlined register interface and command set designed for Enterprise and Client systems that use PCI Express* SSDs. NVM Express was developed to reduce latency and provide faster performance with support for security and end-to-end data protection.
- PCIe faster than SAS and SATA
 - SATA 3: 12Gb/s
 - PCle Gen 3 x8: 64Gb/s

Interfaces & subsystem – PCIe SSD

Architecture example

Interfaces & subsystem - DIMM

- Adding NandFlash on the memory bus
 - DDR-like interface with non-volatile feature?
 - Or SSD with DDR-like interface?
- Both!
 - NV-DIMM (up to 8GB)
 - DRAM with NandFlash as a storage backup in case of power failure
 - UlltraDIMM (Sandisk) up to 400GB
 - □ Full SSD on the DIMM bus, <5µs write latency

Interfaces & subsystem - DIMM

■ NV-DIMM

Ulltradimm

Interfaces & subsystem – PCIe and CAPI

- □ IBM Capi interface
 - Power8 CPU interface
 - Coherent Accelerator Processor Interface
- Protocol on top of PCIe.
- Used to connect auxiliary specialized processors such as GPU, ASIC, FPGA. Can use the same memory address space as the CPU

Interfaces & subsystem - HMC

- Hybrid Memory Cube consortium
 - 3D DRAM technology using high-speed logic process technology with a stack of throughsilicon-via (TSV) bonded memory die.
 - A single HMC can provide more than 15x the performance of a DDR3 module.
 - Utilizing 70% less energy per bit than DDR3 DRAM technologies..
 - Using nearly 90% less space than RDIMMs.

Controllers

- X86 CPUs are commonly used for Big Data processing
- Easy to program
- Most important part of the power budget

Controllers - FPGA

- Field Programmable Gate Array
 - Allows full hardware acceleration processing
 - Field-update capability
 - 5 to 10x better performance/power vs a software solution
 - OpenCL programmable

Controllers - FPGA

- Examples
 - Microsoft is using FPGA board for Bing processing acceleration
 - Intel to come with FPGA and Xeon in a single package
 - □ IBM CAPI interface for FPGA

Controllers - RISC CPU

- Products available
- Software ecosystem in development
- □ Lower performance vs x86...
- ...but very lower power
- Need multiple chips to reach the same performance, at a reduced power budget

New generation of SSDs

With "in-situ processing capabilities

Local big data analytics

New generation of SSDs

New distributed programming models

Future of big data analytics architecture example

What's next?

Next decade – Silicon Photonics

Today

Next decade - Silicon Photonics

2020-2025

Conclusion

- Stay tuned, technologies are evolving rapidly
 - New memories
 - □ Fast like DRAM
 - Density and nonvolatile like NandFlash
 - PCIe bus to connect SSD and FPGA
 - FPGA for power efficient dedicated processing
 - RISC CPU for lower power consumption

Emerging storage and HPC technologies to accelerate big data analytics

Thanks!

Jerome Gaysse

JG Consulting
jerome.gaysse@embedsyst.com