
1

From ARIES to MARS:
Transaction Support for Next-
Generation, Solid-State Drives

Joel Coburn*, Trevor Bunker*, Meir Schwarz, Rajesh
Gupta, Steven Swanson

Non-volatile Systems Laboratory
Department of Computer Science and Engineering
University of California, San Diego

* Now at Google

2

Spin-torque
MRAM

Faster than Flash
Non-volatile Memories

Phase change memory

Memristor

• Flash is everywhere but
has its idiosyncrasies

• New device
characteristics
– Nearly as fast as DRAM
– Nearly as dense as flash
– Non-volatile
– Reliable

• Applications
– DRAM replacements
– Fast storage

3

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1000000 100000

Ba
nd

w
id

th
 R

el
at

iv
e

to
 d

is
k

1/Latency Relative To Disk

Hard Drives (2006) PCIe-Flash (2007)

PCIe-PCM (2010)

PCIe-Flash (2012)

PCIe-PCM (2014?)

DDR Fast NVM (2016?)

5917x 2.4x/yr

7200x 2.4x/yr

More than Moore’s Law Performance

4

Realizing the Potential of fast NVMs

Physical Storage

Low-level IO

File System

Process Isolation

Applications

Storage Controller

NV-DIMM

NV-DIMM

NV-DIMM

NV-DIMM

NV-DIMM

NV-DIMM

Low-level IO

File System

Process Isolation

Applications 15

9

8 3

20 20

29

29 20 Log

29

WAL algorithms were designed for disk!

5

Moneta-Direct SSD for Fast NVMs

• FPGA-based prototype
– DDR2 DRAM emulates PCM
– PCIe: 2GB/s, full duplex

• Optimized kernel driver
and device interface
– Eliminate disk-based

bottlenecks in IO stack

• User-space driver
– Eliminates OS and FS costs

in the common case
5µs latency,

1.8M IOPS for 512B requests

[SC 2010, Micro 2010, ASPLOS 2012]

6

Characteristics of Fast SSDs

Disk Moneta
Latency (4KB) 7000µs 7µs
Bandwidth (4KB) 2.6MB/s 1700MB/s
Sequential/random performance ~100:1 1:1
Minimum request size/alignment Block Byte
Parallelism 1 64
Internal/external bandwidth 1:1 8:1

7

Existing Support for Transactions
• Disk-based systems

– Write-ahead logging approaches: ARIES [TODS 92], Stasis [OSDI
06], Segment-based recovery [VLDB 09], Aether [VLDB 10]

– Device/HW support: Logical Disk [SOSP 93], Atomic Recovery
Units [ICDCS 96], Mime [HPL-TR 92]

– Shadow paging in file systems: ZFS, WAFL

• Non-volatile main memory
– Persistent regions: RVM [TOCS 94], Rio Vista [SOSP 97]
– Programming support: Mnemosyne, NV-heaps [ASPLOS 11]

• Flash-based SSDs

– Transactional Flash [OSDI 08]
– FusionIO’s AtomicWrite [HPCA 11]

8

ARIES: Write-Ahead Logging
Recovery Algorithm for Databases

Feature Benefit(s)
Flexible storage
management

Supports varying length data
and high concurrency

Fine-grained locking High concurrency
Partial rollbacks via
savepoints

Robust and efficient
transactions

Recovery independence Simple and robust recovery
Operation logging High concurrency lock modes

Fast, flexible, and scalable ACID transactions

9

ARIES Disk-Centric Design
Design Decision Advantages How?

No-force

Eliminate synchronous random
writes

Flush redo log entries to
storage on commit

Steal

Reclaim buffer space (scalability)
Eliminate random writes
Avoid false conflicts on pages

Write undo log entries
before writing back dirty
pages

Pages Simplify recovery and buffer
management
Match the semantics of disk

All updates are to pages
Page writes are atomic

Log Sequence
Numbers (LSNs)

Simplify recovery
Enable features like operation
logging

LSNs provide an
ordering on updates

Good for disk, not good for fast SSDs

10

MARS:
Modified ARIES Redesigned for SSDs

Moneta-Direct
Driver

Storage Manager

Moneta-Direct SSD

Applications

Kernel IO

File System Simplified ARIES Replacement
+

Flexible software interface
+

Hardware support

Editable Atomic Writes

11

Editable Atomic Writes (EAWs)

Atomic {
 Write A
 Write B
 Write C
 …
 If(x)
 Write A’
 …
}

Log

Data

Storage

A B
C

A’ Write the log

Commit

Applications can access and
edit the log prior to commit.
Hardware copies data in-place.

12

A A

B
C

Editable Atomic Write Execution
Storage

Transaction
Table

Metadata
File

B Log
File

Data
File

Memory

LogWrite(t1,memA,dataA,logA);
LogWrite(t1,memB,dataB,logB);
LogWrite(t1,memC,dataC,logC);
If(x) Write(memA,logA);
Commit(t1);
// WriteBack(t1);

PENDING

C

COMMITTED FREE
0

63

A
A’

A’ A’
A’

B
C

13

Designing MARS for Fast NVMs

No-force

Steal

Pages

LSNs

Perform write backs in hardware at
the memory controllers

Hardware does in-place updates
Eliminate undo logging
Log always holds latest copy

Software sees contiguous objects
Hardware manages the layout of
objects across memory controllers

Hardware maintains ordering with
commit sequence numbers

14

MARS Features using EAWs

Feature Provided by
MARS?

Flexible storage management
Fine-grained locking
Partial rollbacks via savepoints
Recovery independence
Operation logging N/A

15

8 GB 8 GB

Logger

EAW Hardware Architecture

Ring
Control

Transfer
Buffers

DMA
Control

Score
board

Host
via
PIO

Host via
DMA

Req
Queue

Ri
ng

 (4
 G

B/
s)

8 GB

Logger

8 GB

Logger

8 GB

Logger

Logger

8 GB

Logger

8 GB

Logger

8 GB

Logger

TID
Manager

Tag
Renamer

Perm
Check

TID Status

Req Status

2-phase commit protocol

Commit

Pend

Pend Pend

Comm

Comm Comm

Write back Ack

Free

Free Free

16

Latency Breakdown

Up to 3x faster than software only

17

0

200

400

600

800

1000

1200

1400

1600

1800

0.5 1 2 4 8 16 32 64 128 256 512

Su
st

ai
ne

d
Ba

nd
w

id
th

 (M
B/

s)

Access Size (KB)

Write

SoftAtomic

0

200

400

600

800

1000

1200

1400

1600

1800

0.5 1 2 4 8 16 32 64 128 256 512

Su
st

ai
ne

d
Ba

nd
w

id
th

 (M
B/

s)

Access Size (KB)

Write

AtomicWrite

SoftAtomic

Bandwidth Comparison

2 to 3.8x
improvement

18

Internal Memory Bandwidth

0

1000

2000

3000

4000

5000

6000

0.5 1 2 4 8 16 32 64 128 256 512

Su
st

ai
ne

d
Ba

nd
w

id
th

 (M
B/

s)

Access Size (KB)

Write

AtomicWrite

SoftAtomic

3x bandwidth

19

MemcacheDB:
Persistent Key Value Store

1.7x faster than SoftAtomic, 3.8x faster than BDB

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 4 8

O
pe

ra
tio

ns
/s

ec

Client Threads

Unsafe

Editable Atomic Write

SoftAtomic

Berkeley DB

20

Comparison of MARS and ARIES

4x throughput improvement and better scalability

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 4 8 16

Sw
ap

s/
se

c

Threads

4KB-MARS

4KB-ARIES

21

Conclusions from MARS

• MARS: Redesign of write-ahead logging for NVMs
– Provides the features of ARIES but none of the disk-

related overheads in a database storage manager

• Editable Atomic Writes (EAWs)
– Makes the log accessible and editable prior to commit
– Minimizes the cost of atomicity and durability
– Offloads logging, commit, and write back to hardware

• MARS achieves 4x the performance of ARIES
– Reduces latency and required host/device bandwidth

22

Thank you!

Any questions?

	From ARIES to MARS:�Transaction Support for Next-Generation, Solid-State Drives
	Faster than Flash �Non-volatile Memories
	Slide Number 3
	Realizing the Potential of fast NVMs
	Moneta-Direct SSD for Fast NVMs
	Characteristics of Fast SSDs
	Existing Support for Transactions
	ARIES: Write-Ahead Logging Recovery Algorithm for Databases
	ARIES Disk-Centric Design
	�MARS:�Modified ARIES Redesigned for SSDs
	Editable Atomic Writes (EAWs)
	Editable Atomic Write Execution
	Designing MARS for Fast NVMs
	MARS Features using EAWs
	�EAW Hardware Architecture
	Latency Breakdown
	Bandwidth Comparison
	Internal Memory Bandwidth
	MemcacheDB: �Persistent Key Value Store
	Comparison of MARS and ARIES
	Conclusions from MARS
	Slide Number 22

