
PRESENTATION TITLE GOES HERE Swift Object Storage:
Adding Erasure Codes

Paul Luse, Sr. Staff Engineer – Intel Corporation
Kevin Greenan, Staff Software Engineer – Box

Sep 2014

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

SNIA Legal Notice

The material contained in this tutorial is copyrighted by the SNIA unless
otherwise noted.
Member companies and individual members may use this material in
presentations and literature under the following conditions:

Any slide or slides used must be reproduced in their entirety without modification
The SNIA must be acknowledged as the source of any material used in the body of
any document containing material from these presentations.

This presentation is a project of the SNIA Education Committee.
Neither the author nor the presenter is an attorney and nothing in this
presentation is intended to be, or should be construed as legal advice or an
opinion of counsel. If you need legal advice or a legal opinion please
contact your attorney.
The information presented herein represents the author's personal opinion
and current understanding of the relevant issues involved. The author, the
presenter, and the SNIA do not assume any responsibility or liability for
damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.

2

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Abstract

Swift Object Storage: Adding Erasure Codes
This session will provide insight into this extremely successful
community effort of adding an Erasure Code capability to the
OpenStack Swift Object Storage System by walking the
audience through the design and development experience
through the eyes of the developers from key contributors. An
overview of Swift Architecture and basic Erasure Codes will be
followed by design/implementation details.

3

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Agenda

• Swift
– A Community Project
– Swift Overview
– Storage Policies

• Erasure Codes
– History
– Variations
– Matrix encode/decode
– PyECLib & liberasurecode

• Erasure Code Implementation for Swift
– Design considerations
– Architecture overview

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Swift: A Community Project

• Vibrant community,
• top contributing companies for Juno include: SwiftStack*,

Intel, Redhat*, IBM*, HP*, Rackspace*, Box*

• The path to EC…

• Core OpenStack* Service
• One of the original 2 projects
• 100% Python
• ~ 35K LOC
• > 2x that in unit, functional, error injection code

Juno
Fall ‘14

IceHouse
Spring ‘14

Havana
Fall ‘13

Kilo
Spring ‘15

Early EC
Discussion

Policies
Development

Policies
Released EC Ready!

EC Library
Development

Swift EC
Development

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Swift Overview

container

object

Objects are organized
with containers

• Uses container model for grouping objects
with like characteristics

– Objects are identified by their paths and have
user-defined metadata associated with them

• Accessed via RESTful interface
– GET, PUT, DELETE

• Built upon standard hardware and highly
scalable

– Cost effective, efficient

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

What Swift is Not

• Block Storage System
– Does not provide block-level storage service

Not a “One Size Fits All” Storage Solution

• Distributed File System
– Does not provide POSIX file system API support

• Relational Database
– Does not support ACID semantics

• NoSQL Data Store
– Not built on the Key-Value/Document/Column-Family

model

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

wsgi server

account controller

middleware

swift proxy
wsgi application container controller

object controller

helper functions

wsgi server

replicator

middleware

swift object
wsgi application auditor

expirer

updater

replicator swift account
wsgi application auditor

reaper

helper functions

replicator swift container
wsgi application auditor

sync

updater

P
ro

xy
 N

od
es

S

to
ra

ge
 N

od
es

Swift Software Architecture

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Doc

Swift 2.0: Why Storage Policies?

container

object

You get N-replication in
every container

• There were no core capabilities to expose or
make use of differentiated hardware within the
cluster

• If several nodes of a cluster have newer/faster
characteristics, they can’t be fully realized (the
administrator/users are at the mercy of the dispersion
algorithm alone for data placement).

• There’s was no extensibility for additional
durability schemes

– Use of erasure codes (EC)
– Mixed use of schemes (some nodes do 2x, some do

3x, some do EC)

• Prior to, durability scheme applies to entire cluster
– Can do replication of 2x, 3x, etc., however the entire

cluster must use that setting

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

• The ring is a static data structure maintained external to
the cluster (tools provided)

Ring

partitions

• Each partition maps to a list of devices via two array
elements within the ring structure

• Devices are assigned to partitions with several policies
(regions, zones, etc.) and constraints to assure fault
tolerance and load balancing

Idx Copy 1 Copy 2 Copy 3

0 11 21 43

… … … …

10 34 1 0

… … … …

Idx Device

0 Node 3, device 1

1 Node 12, device 2

… ….

34 Node 1, device 4

… …

• An object name maps to a partition via MD5 hash

MD5*(URL) = index

Note: Swift uses a modified MD5 consistent hashing ring

replica2part2dev_id

devs

The Swift Ring

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Doc

Triple
Replication

n locations,
object fragments

• Introduction of multiple object rings
– Swift supports multiple rings already, but only one for

object – the others are for account and container DB.

• Introduction of container tag: X-Storage-Policy
– New immutable container metadata

– Policy change accomplished via data movement

– Each container is associated with a potentially different ring

Reduced
Replication

Erasure
Codes

3 Different Policies:
3 Different Rings

3 locations,
same object

2 locations,
same object

What are Policies?

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Capacity Tier

Access Tier

Putting it All Together

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Clients

RESTful API, Similar to S3

Download

Copy 1
Copy 2

Copy 3

Upload

Obj A

• Handle incoming requests
• Handle failures, ganged responses

• Scalable shared nothing architecture
• Consistent hashing ring distribution

Scalable for concurrency and/or capacity independently

• Actual object storage
• Variable replication count

• Data integrity services
• Scale-out capacity

Auth
Service

Obj A

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Agenda

• Swift
– Swift Overview
– Storage Policies

• Erasure Codes
– Background
– Example encode/decode using Reed-Solomon
– Minimizing reconstruction cost
– PyECLib & liberasurecode

• Erasure Code Implementation for Swift
– Design considerations
– Architecture overview

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

History of Erasure Coding

Source: Tutorial on Erasure Coding for Storage Applications, Part 1. James Plank FAST ‘13

1960’s
• Coding Theory
• Reed Solomon, Berlekamp–Massey algorithm

1990’s

• Storage
• RAID-6: EVENODD, RDP, X-Code

• Graph Theory
• LDPC Codes (Tornado, Raptor, LT)

2000’s
• Coding Theory
• Network / Regenerating Codes

2010’s
• Storage
• Non-MDS codes for cloud and recovery

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Terminology

• Split a file into k chunks and encode into n chunks, where n-k=m
• Systematic vs. Non-systematic

– Systematic: encoded output contains input symbols
– Non-systematic: encoded output does not contain input symbols

• Code word
– A set of data and parity related via a set of parity equations
– Systematic: f(data) = code word = (data, parity)

• Layout
– Flat horizontal: each coded symbol is mapped to one device
– Array codes have multiple symbols per device: horizontal and vertical

• MDS vs. non-MDS
– MDS: any k chunks can be used to recover the original file
– Non-MDS: k chunks may not be sufficient to recover the file

Traditionally, storage systems use systematic, MDS codes

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

• Reed-Solomon Codes
• Fountain Codes
• RAID-6 EVENODD
• RAID-6 X-Code
• Generalized XOR
• Pyramid Codes
• Local Repairable Codes (LRC)
• Partial MDS Codes (PMDS)
• Simple Regenerating Codes

and the list goes on…

Variations

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Reed Solomon Systematic
Horizontal Code Layout

Example RS(8,5)

d2,0

d2,1

d2,2

d2,3

Data

d3,0

d3,1

d3,2

d3,3

d4,0

d4,1

d4,2

d4,3

d0,0

d0,1

d0,2

d0,3

d1,0

d1,1

d1,2

d1,3

p0,0

p0,1

p0,2

p0,3

p1,0

p1,1

p1,2

p1,3

p2,0

p2,1

p2,2

p2,3

Parity

• Can Tolerate (n-k) Failures

• Overhead of just (n/k)

total disks = n = 8

parity disks = m = 3
data disks = k = 5

Code word

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Reed Solomon Systematic
Generator Matrix

1 α0
1 α0

2 α0
3 α0

4

1 α1
1 α1

2 α1
3 α1

4

1 α2
1 α2

2 α2
3 α2

4

1 α3
1 α3

2 α3
3 α3

4

1 α4
1 α4

2 α4
3 α4

4

1 α5
1 α5

2 α5
3 α5

4

1 α6
1 α6

2 α6
3 α6

4

1 α7
1 α7

2 α7
3 α7

4

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 1 1 1 1

g0
g1 g2

 g3
 g4

g5 g6 g7
 g8

 g9

f(x) = c0 +c1x1 + c2x2 + ... + ck-1xk-1 Coefficients are
the data

f(α0) = y0
f(α1) = y1

…
f(αn-1) = yn-1

Reed-Solomon is encoded by
oversampling a polynomial

Elementary
Ops

Result
has same

rank

f(α0)

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Reed Solomon Systematic
Matrix Encoding Process

All operations are done in a Galois field

Any (k x k) sub-matrix is invertible

Code word is the vector-matrix product
of the generator matrix and source data
pi = d0 + gid1 + gi

2d2 + gi
3d3 + … + gi

k-1dk-1

d0

d1

d2

d3

d4
=

d0

d1

d2

d3

d4

p1

p2

p3

Generator Matrix data code word

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 1 1 1 1

g0
g1 g2

 g3
 g4

g5 g6 g7
 g8

 g9

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Step 1: Eliminate all but k available rows in the generator matrix

Generator Matrix × data = parity

d0

d1

d2

d3

d4
=

d0

d1

d2

d3

d4

p1

p2

p3

X

X

X

These disks just died

Reed Solomon Systematic
Matrix Decoding Process

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 1 1 1 1

g0
g1 g2

 g3
 g4

g5 g6 g7
 g8

 g9

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Step 2:Invert the resulting matrix

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

1 1 1 1 1

g0 g1 g2
 g3

 g4

Reed Solomon Systematic
Matrix Decoding Process

Invert
G’

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Step 3: “Solve” by multiplying k element vector of available
 symbols by corresponding rows of G’

= G’ G G’

D
ata

R
em

aining

= G’

d0

d1

d2

d3

d4

d1

d2

d4

p1

p2

d0 = g’00d1 + g’01d2 + g’02d4 + g’03p1 + g’04p2
d3 = g’30d1 + g’31d2 + g’32d4 + g’33p1 + g’34p2

Here’s the missing data!

Reed Solomon Systematic
Matrix Decoding Process

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Minimizing Reconstruction Cost

• Reed-Solomon requires k available elements to reconstruct any missing element

• This has given rise to many codes that minimize repair costs
– Regenerating codes, locally repairable codes, flat-XOR codes, etc.

– Trade space efficiency for more efficient reconstruction

• Replication repair-optimal, RS is space-optimal, these are somewhere in the middle

• Simple XOR-only example with k = 6, m = 4:

P0 = D0 + D1 + D3
P1 = D1 + D2 + D5
P2 = D0 + D2 + D4
P3 = D3 + D4 + D5

×
×

D0 = P0 + D1 + D3

D0 = P2 + D2 + D4

Only requires 3 devices to reconstruct one failed device

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

PyECLib

†Relative tests conducted with home grown test code using ISA-L libra

• Goal: provide a pluggable, easy-to-use EC library for Python

• Swift is the main use-case

• Originally had all logic in PyECLib, but have offloaded “smarts” to liberasurecode
– Separation of concerns: one converts between Python and C, and the other does erasure coding

– API of PyECLib is same as liberasurecode

encode A
P

I
C

or
e Python-C Interface

liberasurecode

decode reconstruct required_fragments check_metadata segement_info

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

liberasurecode

†Relative tests conducted with home grown test code using ISA-L libra

• Goal: Separate EC-specific logic from language-specific translation

• Embedded metadata: original file size, checksum, version info, etc.

• Provides ability to plug-in and use new erasure code schemes/libraries
– In addition to XOR codes, we currently provide Jerasure and ISA-L

backend plug-in layer

C
or

e

Backend API

A
P

I

built-in utils

Backend-A Backend-B …

External Libraries

libA libB …

XOR Codes
Checksums

Helpers
Pre/Post-Processing

encode decode reconstruct required_fragments check_metadata segement_info

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Agenda

• Swift
– Swift Overview
– Storage Policies

• Erasure Codes
– History
– Variations
– Matrix encode/decode
– PyECLib & liberasurecode

• Erasure Code Implementation for Swift
– Design considerations
– Architecture overview

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Design Considerations

• GET/PUT Erasure Code encode/decode done at proxy server
– Aligned with current Swift architecture to focus hardware demanding services in the access

tier

– Enable in-line Erasure Code directed by client as well as off-line Erasure Code directed by
sideband application / management tier

• Build Upon Storage Policies
– New container metadata will identify whether objects within it are erasure coded

• Keep it simple and leverage current architecture
– Multiple new storage node services required to assure Erasure Code chunk integrity as well

as Erasure Code stripe integrity; modeled after replica services

– Storage nodes participate in Erasure Code encode/decode for reconstruction analogous to
replication services synchronizing objects

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Swift With EC Architecture High Level

wsgi server

existing modules

middleware

swift proxy
wsgi application

wsgi server

middleware

swift object
wsgi application

swift account
wsgi application

swift container
wsgi application

P
ro

xy
 N

od
es

S

to
ra

ge
 N

od
es

controller modifications
PyECLib

 Plug in 1 Plug in 2

existing modules

existing modules

existing modules EC Auditor

EC Reconstructor
PyECLib

 Plug in 1 Plug in 2

metadata changes

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Capacity Tier (Storage)

Access Tier (Concurrency)

Swift With Erasure Code

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Clients

RESTful API, Similar to S3

Download

Frag 1

Frag 2

Frag 3

Frag 4

Frag N

Decoder

Upload

Encoder

Obj A Obj A

• Applications control policy
• EC can be inline or offline

Erasure Code Technology Lowering TCO for Swift

• Supports multiple policies
• EC flexibility via plug-in

Auth
Service

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

For More Information…

• Trello discussion board:

 https://trello.com/b/LlvIFIQs/swift-erasure-codes
• Launchpad blueprints:

https://blueprints.launchpad.net/swift
• Swift Code (see feature/EC branch):

https://code.launchpad.net/swift
• PyECLib:

 https://bitbucket.org/kmgreen2/pyeclib
• Liberasurecode:
 https://bitbucket.org/tsg-/liberasurecode

https://trello.com/b/LlvIFIQs/swift-erasure-codes
https://blueprints.launchpad.net/swift
https://code.launchpad.net/swift
https://bitbucket.org/kmgreen2/pyeclib
https://bitbucket.org/tsg-/liberasurecode

Insert tutorial title in footer
© 2013 Storage Networking Industry Association. All Rights Reserved.

Attribution & Feedback

31

Please send any questions or comments regarding this SNIA
Tutorial to tracktutorials@snia.org

The SNIA Education Committee thanks the following
individuals for their contributions to this Tutorial.

Authorship History

Name/Date of Original Author here:
Paul Luse, Kevin Greenan. 8/2014

Updates:

None

Additional Contributors

None

mailto:tracktutorials@snia.org

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Backup

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Block File Object

Block, File & Object

33

Specific location on
disks / memory

Tracks

Sectors

Specific folder in
fixed logical order

File path

File name

Date

Flexible
container size

Data and Metadata

Unique ID

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Object Store

Scalability
Flat namespace
No volume semantics
No Locking/Attributes
Contains metadata

Durability
Replication or

 Erasure code
Manageability

REST API
Low overhead

Consistency
Eventually consistent

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

Swift Use Cases

server1:/exp1 server2:/exp1

DISTRIBUTED VOLUME

BRICK BRICK

Swift Cluster

Storage
Node

Storage
Node

Web/Mobile
• Images/Audio/Video

• Middleware for dynamic
resizing

• Ex: Wikipedia

IAAS
-Public or private

-Multi-tenant storage
-Multiple available gateways

VM Images
-OpenStack* Integration

-Managed by Glance

Cloud
Backup

-Large unstructured data

Proxy Nodes

Objects

A
cc

es
s

Ti
er

C

ap
ac

ity
 T

ie
r

Load Balancer
Auth

Swift Object Storage: Adding Erasure Codes
© 2014 Storage Networking Industry Association. All Rights Reserved.

The CAP Theorem: Pick 2

 Consistency
(same view)

 Availability
(data access)

 Partition Tolerance
(node access)

Enforced
Consistency

Eventual
Consistency

Swift chooses Availability and Partition Tolerance over Consistency

	Swift Object Storage: �Adding Erasure Codes
	SNIA Legal Notice
	Abstract
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Terminology
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Minimizing Reconstruction Cost
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	For More Information…
	Attribution & Feedback
	Backup
	Block, File & Object
	Object Store
	Swift Use Cases
	The CAP Theorem: Pick 2

