

“This document has been released and approved by the SNIA. The SNIA
believes that the ideas, methodologies and technologies described in this
document accurately represent the SNIA goals and are appropriate for
widespread distribution. Suggestion for revision should be directed to the SNIA
Technical Council Managing Director at tcmd@snia.org.”

SNIA Technical Position

February 7, 2005

Multipath Management API
Version 1.0

Multipath Management API SNIA Technical Position ii
Version 1.0

Notice
The SNIA hereby grants permission for individuals to use this document for personal use
only, and for corporations and other business entities to use this document for internal
use only (including internal copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced must be reproduced in its
entirety with no alteration, and,

2. Any document, printed or electronic, in which material from this document (or any
portion hereof) is reproduced must acknowledge the SNIA copyright on that
material, and must credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this
document, sell any or this entire document, or distribute this document to third parties. All
rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be
requested by e-mailing tcmd@snia.org please include the identity of the requesting individual
and/or company and a brief description of the purpose, nature, and scope of the requested use.

Copyright © 2005 Storage Networking Industry Association.

Multipath Management API SNIA Technical Position iii
Version 1.0

Table of Contents
1 Introduction.. 1

1.1 Credits .. 1
1.2 Disclaimer .. 1

2 Document Conventions ... 2
2.1 References... 3

3 Background Technical Information.. 4
3.1 Overview .. 4
3.2 Client Discovery of Optional Behavior 10
3.3 Events .. 14
3.4 Terms ... 14
3.5 API Programming Concepts .. 16

4 Constants and Structures.. 19
4.1 MP_WCHAR .. 19
4.2 MP_CHAR.. 19
4.3 MP_BYTE .. 19
4.4 MP_BOOL.. 19
4.5 MP_XBOOL ... 19
4.6 MP_UINT32 ... 19
4.7 MP_UINT64 ... 19
4.8 MP_STATUS.. 19
4.9 MP_PATH_STATE... 20
4.10 MP_OBJECT_VISIBILITY_FN ... 21
4.11 MP_OBJECT_PROPERTY_FN ... 22
4.12 MP_OBJECT_TYPE... 22
4.13 MP_OID.. 23
4.14 MP_OID_LIST .. 24
4.15 MP_PORT_TRANSPORT_TYPE .. 24
4.16 MP_ACCESS_STATE_TYPE .. 25
4.17 MP_LOAD_BALANCE_TYPE .. 26
4.18 MP_PROPRIETARY_PROPERTY 27
4.19 MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES 27
4.20 MP_LOGICAL_UNIT_NAME_TYPE 28
4.21 MP_LIBRARY_PROPERTIES ... 28
4.22 MP_AUTOFAILBACK_SUPPORT 29
4.23 MP_AUTOPROBING_SUPPORT.. 29
4.24 MP_PLUGIN_PROPERTIES ... 30
4.25 MP_DEVICE_PRODUCT_PROPERTIES............................ 33
4.26 MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES 33
4.27 MP_PATH_LOGICAL_UNIT_PROPERTIES 36
4.28 MP_INITIATOR_PORT_PROPERTIES............................... 37
4.29 MP_TARGET_PORT_PROPERTIES 37
4.30 MP_TARGET_PORT_GROUP_PROPERTIES................... 38
4.31 MP_TPG_STATE_PAIR... 38

5 APIs ... 40
5.1 MP_AssignLogicalUnitToTPG ... 42
5.2 MP_CancelOverridePath ... 44
5.3 MP_CompareOIDs... 45
5.4 MP_DeregisterForObjectPropertyChanges 46
5.5 MP_DeregisterForObjectVisibilityChanges.............................. 48

Multipath Management API SNIA Technical Position iv
Version 1.0

5.6 MP_DeregisterPlugin ... 50
5.7 MP_DisableAutoFailback... 51
5.8 MP_DisableAutoProbing.. 52
5.9 MP_DisablePath .. 53
5.10 MP_EnableAutoFailback .. 54
5.11 MP_EnableAutoProbing ... 55
5.12 MP_EnablePath.. 56
5.13 MP_FreeOidList.. 57
5.14 MP_GetAssociatedPathOidList .. 58
5.15 MP_GetAssociatedPluginOid ... 59
5.16 MP_GetAssociatedTPGOidList .. 60
5.17 MP_GetDeviceProductOidList.. 61
5.18 MP_GetDeviceProductProperties .. 62
5.19 MP_GetInitiatorPortOidList... 63
5.20 MP_GetInitiatorPortProperties ... 64
5.21 MP_GetLibraryProperties... 65
5.22 MP_GetMPLuOidListFromTPG.. 66
5.23 MP_GetMPLogicalUnitProperties... 67
5.24 MP_GetMultipathLus .. 68
5.25 MP_GetObjectType .. 69
5.26 MP_GetPathLogicalUnitProperties....................................... 70
5.27 MP_GetPluginOidList ... 71
5.28 MP_GetPluginProperties.. 72
5.29 MP_GetProprietaryLoadBalanceOidList 73
5.30 MP_GetProprietaryLoadBalanceProperties 74
5.31 MP_GetTargetPortGroupProperties..................................... 75
5.32 MP_GetTargetPortOidList .. 76
5.33 MP_GetTargetPortProperties... 77
5.34 MP_RegisterForObjectPropertyChanges............................. 78
5.35 MP_RegisterForObjectVisibilityChanges 80
5.36 MP_RegisterPlugin... 82
5.37 MP_SetLogicalUnitLoadBalanceType.................................. 83
5.38 MP_SetOverridePath.. 84
5.39 MP_SetPathWeight .. 85
5.40 MP_SetPluginLoadBalanceType.. 86
5.41 MP_SetFailbackPollingRate... 87
5.42 MP_SetProbingPollingRate.. 88
5.43 MP_SetProprietaryProperties... 89
5.44 MP_SetTPGAccess.. 90

6 Implementation Compliance.. 92
7 Notes ... 93

7.1 Backwards Compatibility .. 93
7.2 Client Usage Notes .. 93
7.3 Library Implementation Notes .. 93
7.4 Plugin Implementation Notes ... 94

Appendix A - Device Names ... 95
A.1 Logical Unit osDeviceName... 96

Appendix B - Synthesizing Target Port Groups 97
Appendix C - Transport Layer Multipathing .. 99
Appendix D - Coding Examples .. 100

D.1 Example of Getting Library Properties 101
D.2 Example of Getting Plugin Properties 102

Multipath Management API SNIA Technical Position v
Version 1.0

D.3 Example of Discovering path LUs associated with an MP LU103
Appendix E - Library/Plugin API.. 104

Multipath Management API SNIA Technical Position 1
Version 1.0

1 Introduction
The purpose of this document is to specify the SNIA Multipath Management API. This API allows
a management application to discover the multipath devices on the current system and to
discover the associated local and device ports. An implementation of the API may optionally
include active management (failover, load balancing, manual path overrides). The API uses an
architecture that allows multiple MP drivers installed on a system to each provide plugins to a
common library. The plugins can support multipath drivers bundled with an OS, or drivers
associated with an HBA, target device, or volume manager. This API can be used by host-based
management applications and will also be included in the SMI-S Host Discovered Resources
Profile for enterprise-wide multipath discovery and management. A client of the API should be
able to move between platforms by simply recompiling.

If you have any questions regarding any of the information found in this document please send an
email to mailto: multipath@snia.org with your questions.

1.1 Credits
The following people have contributed to the creation of this document:

Phil Abercrombie AppIQ

Naila Beg Hewlett-Packard Company

Edie Epstein EMC

Jack Flynn IBM

John Forte Sun Microsystems

Howard Green EMC

Ray Jantz Engenio Information Technologies, Inc.

Hyon Kim Sun Microsystems

David Lawson Emulex Corporation

Unnikrishnan PK Hewlett-Packard Company

Rich Ramos Xyratrex

James Smart Emulex Corporation

Stephen Tee IBM

Paul von Behren Sun Microsystems

Joe Wesley Sun Microsystems

1.2 Disclaimer
The SNIA makes no assurance or warranty about the interoperability, data integrity, reliability, or
performance of products that implement this specification.

Multipath Management API SNIA Technical Position 2
Version 1.0

2 Document Conventions
The API is specified as a set of types and structures (see Constants and Structures on page 19)
followed by a set of function definitions (see APIs on page 40). This section discusses the
formats used in these sections along with conventions used in defining the API.

Constants are defined as a list of #defines followed by a typedef for a C integer type. C language
enums do not have a specific size; using #defines rather than enums helps assure client code is
interoperable across platforms and compilers – especially if used in C++ applications.

API Description Format

Each API’s description is divided into seven sections.

1. Synopsis
This section gives a brief description of what action the API performs.

2. Prototype
This section gives a prototype of the function in a format that is a combination of a C
function prototype and an Interface Definition Language (IDL) prototype. The prototypes
show the following:

• The name of the API
• The return type of the API
• Each of the parameters of the API, the type of each parameter, and whether that

parameter is an input parameter, output parameter, or both an input and an
output parameter.

3. Parameters
This section lists each parameter along with an explanation of what the parameter
represents.

4. Typical Return Values
This section lists the Typical Return Values of the API with an explanation of why a
particular return value would be returned. It is important to note that this list is not a
comprehensive list of all of the possible return values. There are certain errors, e.g.
MP_STATUS_INSUFFICIENT_MEMORY, which might be returned by any API.

5. Remarks
This section contains comments about the API that may be useful to the reader. In
particular, this section will contain extra information about the information returned by the
API.

6. Support
This section says if an API is mandatory to be supported, optional to be supported, or
mandatory to be supported under certain conditions.

• If an API is mandatory to be supported a client can rely on the API functioning
under all circumstances.

• If the API is optional to be supported then a client cannot rely on the API
functioning.

• If the API is mandatory to be supported under certain conditions then a client can
rely on the API functioning if the specified conditions are met. Otherwise a client
should assume that the API is not supported.

7. See Also
This section lists other related APIs or related code examples that the reader might find
useful.

Multipath Management API SNIA Technical Position 3
Version 1.0

2.1 References
The following documents are referenced in this specification.

Specification Name Abbreviation Reference Number
SCSI Primary Commands 3 (draft, in
final review phases)

SPC3 ISO/IEC 14776-313
INCITS: 1416-D

FC API Host Bus Adapter
Application Programming Interface

FC HBA INCITS 386:2004

ISCSI Management API IMA

Multipath Management API SNIA Technical Position 4
Version 1.0

3 Background Technical Information

3.1 Overview
Open system platforms give applications access to physical devices by presenting a special set
of file names that represent the devices. Although end users typically don't use these special
device files, knowledgeable applications (file systems, databases, backup software) operate on
these device files and provide familiar user interfaces to storage. The device files have a
hierarchical organization, either by using files and directories or by naming conventions.

This hierarchy of device files (sometimes called a device tree) provides an effective interface for
simpler, desktop device configurations. Inside open systems kernels, the hierarchy is exploited to
allow different drivers to operate on different parts of the device tree. When the OS discovers
connected devices and builds the device tree, multiple paths to the same device may show up as
separate device files in the device tree. Separate storage applications using device files that
represent paths to the same device will overwrite each other’s data.

As storage products (typically disk arrays) strove for better reliability and performance, they
added multipath support. For OSes that lacked multipath support, the device and logical volume
manager vendors provided multipath drivers. Device standards lacked standard interfaces for
identifying multipath devices; so multipath drivers are often limited to specific device products.
Recently standards have been defined and OS vendors have started integrating multipath
support in their bundled drivers.

These drivers create special device files that represent multipath devices. Storage applications
like file systems can use these multipath device files the same way they would use a single-path
device file, but benefit from improved reliability and performance. In addition, the multipath
drivers provide some management capabilities – for example, failover or load balancing – that
only apply to multipath devices.

This specification focuses on devices accesses through SCSI commands. SCSI commands are
sent to a target device by an initiator. The target may consist of multiple logical units. For
example, a RAID array exposes virtual disk as separate logical units. A target device supporting
multiple paths and attached hosts will nearly always have multiple ports. Each permutation of
initiator port, target port, and logical unit is commonly referred to as a path. With no multipath
support in place, the OS would see each path as separate logical units. The function of multipath
drivers is then to create a virtual multipath device the aggregates all these path logical units.

3.1.1 Target Port Groups
A logical unit may only be accessible through certain target ports. If the device supports
asymmetric access (see section 3.1.2 Symmetric and Asymmetric Multipath Access), certain
ports may be preferred for access (sometimes this is referred to as affinity. The SCSI standard
(SPC3) has introduced Target Port Groups as a way for target devices to represent access
characteristics for logical units. A target port group is a collection of ports; all the logical units
associated with that target port group share the same access state (active/optimized, active/non-
optimized, standby, or unavailable).

Target Port Groups are abstract elements that may or may not equate to an element of the target
system (such as a controller).

The concept of target port groups can be applied to all devices – even if they don’t actually
implement the SCSI standard interfaces. This API does not require an SPC3-compliant array; it
includes target port groups and uses the SPC3 terminology as a starting point, but is extended to
reflect common vendor implementations.

In order to simplify tasks for client software, all plugins/drivers make it appear that the underlying
hardware uses target port group interfaces. For example, consider an asymmetric array with two
ports where each port is primary (optimized) for half the logical units. The plugin/driver would

Multipath Management API SNIA Technical Position 5
Version 1.0

create four “virtual” target port groups; each logical unit would be part of two target port groups,
one with optimized access state for it’s primary controller and one with non-optimized access
state for the secondary controller. See Synthesizing Target Port Groups on page 97 for more
details.

3.1.1.1 Relationship between Target Port Groups in SCSI and in this API
This section describes the relationship between the interfaces defined in SCSI SPC3 and this API
related to target port groups.

The SCSI INQUIRY VPD page 83h and REPORT TARGET PORT GROUPS commands allow
initiators to discover the target port group configuration.

• INQUIRY VPD page 83h returns a list of identifiers. These include:

o Relative target port identifier – a two-byte value with a target-unique ID for the
target port the INQUIRY is sent to. In this API, this is the relativePortID property
in MP_TARGET_PORT_PROPERTIES.

o Target port group identifier – a two-byte value with a target-unique ID for the
target port group. In this API, this is the tpgID property of
MP_TARGET_PORT_GROUP_PROPERTIES.

• The REPORT TARGET PORT GROUPS command returns a list of target port groups, with
access state, and the list of relative port Ids of target ports that comprise each target port
group. The access state corresponds to this API’s MP_ACCESS_STATE_TYPE and
MP_TARGET_PORT_GROUP accessState property.

The SCSI SET TARGET PORT GROUPS command allows an initiator to set target port access
state – which causes failover or failback. This API provides MP_SetTPGAccess as an interface
to SET TARGET PORT GROUPS.

For a concrete example, Figure 1 Asymmetric Array depicts a RAID array with asymmetric
access and two controllers. Each controller contains two ports that always share the same
access state. The RAID configuration is set up with four logical units; optimally each pair of
logical units is accessed through the ports on different controllers. In case either controller fails,
all four logical units can be accessed through the ports in the alternate controller.

Controller A

Port 1 Port 2

LUN
A

Target Port Group 1

Controller B

Port 3 Port 4

Target Port Group 2

LUN
B

LUN
D

LUN
C

Figure 1 Asymmetric Array Example

The table below summarizes the information returned for this array configuration in the SCSI
Inquiry identifiers and Report Target Port Groups response.

Access from Port 1 or 2 Access from Port 3 or 4 Logical
Unit TPG ID / State TPG ID / State

A 1 / Active Optimized 2 / Standby

Multipath Management API SNIA Technical Position 6
Version 1.0

B 1 / Active Optimized 2 / Standby

C 1 / Standby 2 / Active Optimized

D 1 / Standby 2 / Active Optimized

In case of a failure condition of controller A, all logical units as accessed from port 1 or 2 will
either see lack or response or a TPG access state of Unavailable. Logical Units A and B as seen
through ports 3 or 4 will see an access state of Active Non-optimized.

Note that the target port group access states for a given target port group ID differs depending on
which port the Report Target Port Groups command is issued to. In this API, each target port
group ID and access state permutation is modeled as a different instance of a target port group
class. The figure below is an instance diagram representing the API instances corresponding to
this same asymmetric array described above. The relevant API properties are also included.

Target Port Group

AccessState: Optimized
tpgID: 1

Target Port 2

relativePortID: 2

Target Port 1

relativePortID: 1

Logical Unit A Logical Unit B

Target Port Group

AccessState: StandBy
tpgID: 1

Logical Unit C Logical Unit D

Target Port Group

AccessState: StandBy
tpgID: 2

Target Port Group

AccessState: Optimized
tpgID: 2

Target Port 4

relativePortID: 4

Target Port 3

relativePortID: 3

Figure 2 API Instances corresponding to Asymmetric Array Example

3.1.2 Symmetric and Asymmetric Multipath Access
A multipath device may have symmetric or asymmetric access. There may be a performance
cost when host drivers switch between asymmetric paths. Symmetric access devices avoid that
penalty. One common asymmetric configuration is a RAID array where access to a particular
logical unit is optimal through one device port and non-optimal through the other port. Recent
versions of SCSI Primary Commands 3 (SPC3) specification from T10 include standard
interfaces for discovery and management of multipath devices1. In addition to standardization of
logical unit identifiers and a failover command, SPC3 has interfaces that allow a target device to

1 Although this API provides interfaces for discovery of multipath devices, it only provides information
available through installed plugins. If a client applications requires comprehensive discovery of all devices, it
should also use platform-specific device discovery APIs.

Multipath Management API SNIA Technical Position 7
Version 1.0

describe target port groups. All the ports in a target port group share an access state that is
either optimal or non-optimal.

Symmetric access is indicated by setting the access state to active/optimized in all target ports
groups associated with a logical unit. A target system where all logical units have symmetric
access from all ports could be described with a single target port group with access state
active/optimized associated with all logical units and target ports.

A logical unit could have symmetric access through some, but not all ports. The optimal ports
can be used for load balancing, but the non-optimal ports should only be used for failover. This
would be modeled with target port groups with multiple associated ports and access state set to
active/optimized.

3.1.3 Logical Unit Affinity Groups
Some target devices (particularly RAID arrays) have groups of logical units that failover/failback
as a group; in other words, when one logical units’ target port group access state changes, the
access state of the other logical units in the group also changes. SCSI SPC3 has a simple
interface to discover these groups; the VPD page 83h response can include a Logical Unit Group
Identifier (identifier type 6h). All the logical units that expose the same Logical Unit Group
Identifier are members of the same logical unit group. A logical unit may only be a member of a
single logical unit group.

This API follows the same approach; MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES has a
property logicalUnitGroupID. The details for this property (see page 34) specify how a plugin sets
this property if the target device does not support the SCSI interface.

This API does not provide a mechanism to create a logical unit group or add members. SCSI
SPC3 does not provide this capability. In some implementations, the logical unit groups are
artifacts of other target capabilities. For example, the logical unit groups in some arrays follow
the RAID topology of the configuration of snapshots. Due to the overlap with these other target
features, no interfaces for modification are provided in this API.

3.1.4 Load Balancing
This API includes four interfaces that influence load balancing.

• When multiple paths are available with the same access state, each individual I/O
request can only be issued to one specific path. Multipath drivers may allow the
administrator to select an algorithm used to determine which path is selected.

• Some drivers allow the administrator to select a subset of available paths as most
preferred; assuming no errors are encountered, I/Os are restricted to the preferred paths.
But the non-preferred paths are not necessarily taken off-line; if the preferred paths
become not-available, the non-preferred paths may be used as a fallback. This capability
is implemented entirely in the host drivers, and is independent target port groups. Some
drivers allow multiple levels of preferences – referred to as administrative weights in
this API.

• Drivers may also allow an administrator to specify an override path – a path that
temporarily used for all I/O.

• Drivers may also allow an administrator to disable a path – make a path temporarily
unavailable for load balancing.

The sections below describe these interfaces in more details.

3.1.4.1 Load Balancing Algorithms
The API allows a plugin to advertise multiple load balance algorithms that an API client can offer
to the administrator. Several common algorithms are defined in MP_LOAD_BALANCE_TYPE.
The plugin can extend this list with driver-specific algorithms. The API treats these proprietary

Multipath Management API SNIA Technical Position 8
Version 1.0

algorithms opaquely, but provides a mechanism for the plugin/driver vendor to expose a vendor
and algorithm name to client applications. A client could use these names to populate a “pull-
down” list of load balance algorithms that includes vendor-specific algorithms.

Some multipath drivers have load-balancing algorithms optimized for certain device types. The
device type is determined by the vendor and product IDs returned in the SCSI Inquiry data. A
plugin can report its list of supported device types using
MP_DEVICE_PRODUCT_PROPERTIES.

3.1.4.2 Administrative Preference - Path Weight
Path Weight is a value assigned by an administrator specifying a preference to assign to a path
(or path logical unit). The drivers will actively use all available paths with the highest weight (see
below for clarification of available). This allows an administrator to assign a subset of available
paths for load balanced access and reserve the others as backup paths. For symmetric access
devices, all paths are considered available. For asymmetric access devices, all paths in active
target port groups are considered available.

The range of weights (maximumWeight) supported by the driver is exposed to clients as a plugin
property. A driver with no path weight capabilities should set this property to zero. A driver with
the ability to enable/disable paths should set this property to 1. Plugins for drivers with more
weight settings can set the property appropriately.

Path weight has precedence over driver policy regarding path selection. In other words, if the
drivers understand that a path with a lower weight may be optimal, they should still limit routing to
paths the administrator has assigned the highest weight.

Other APIS may impact I/O routing (MP_DisablePath, MP_EnablePath, MP_SetOverridePath,
MP_SetTPGAccess) but no other API changes the actual weight values. This approach allows
an administrator to define long-term policy using path weights, and temporarily override this policy
in order to address hardware failures, run diagnostic tests, or quiesce hardware.

The default weight (prior to being set by the administrator) is the plugin’s maximumWeight value.

Path weight shall be persisted by the driver or plugin.

Example:

A host has four paths to a LUN on a device with asymmetric access; in the normal case, paths
one and two are active and paths three and four are in standby state. The administrator would
prefer that:

• during non-failover periods, I/O should be through path 1
• if an HBA failure impacts path 1, but the device is not in a failover statue, then path 2

should be used
• if the device is in failover state (making paths 1 and 2 unusable) and all HBAs are

functioning, then path three should be used.

To configure these preferences, the administrator would assign weight 2 to paths one and three
and weight 1 to paths two and four. Actually, the value of the weights is not important as long as
the weights assigned to paths one and three are higher than those assigned to paths two and
four, respectively.

3.1.4.3 Disable Load Balancing - Override Path
The plugin/driver may optionally provide an interface (MP_SetOverridePath) for an override path.
An override path is a single path that the administrator can specify for all I/O to a logical unit.
Setting a preferred path will disable load balancing. Path weights are not changed when a path is
overridden.

Multipath Management API SNIA Technical Position 9
Version 1.0

3.1.4.4 Disable Path
The plugin/driver may optionally provide an interface (MP_DisablePath) to disable a path.
Disabling a path makes it ineligible for load balancing in the future, but it may stay in use while
the drivers migrate activity to a different path. Path weights are not changed when a path is
disabled.

3.1.5 Model Overview
The model for this API contains the following classes:

• Library – the client library interface that front ends all the plugins
• Device Product – information about a specific device supported by the driver
• Plugin – the driver-specific library implementing this API
• Proprietary Load Balance Types – vendor name and description for driver-specific load

balance algorithms; opaque to the API, provides algorithm names to applications
• Initiator port – a port on the system hosting the plugin
• Target port – a port on the device
• Path Logical Unit – represents a single initiator/target port combination accessing a

logical unit. May not have a corresponding OS device file name
• Multipath Logical Unit – the virtual device the aggregates all paths (path logical units)

referencing the same logical unit
• Target Port Group –a set of target ports that share a common access state

Figure 3 is a UML diagram that shows the relationship between the various classes of objects in
the Multipath model.

M P P lugin

M ultipath
Logical U nit

Path
Logical U nit

In itia tor Port

PortID

Target Port

PortID

Target Port G roup

AccessS tate

M P Library

*

1
1

*

*

*

D evice Product

VendorID
ProductID

1

*

P roprietaryLoad
BalanceTypes

Figure 3 Relationship between various objects in the Multipath model

The structures and APIs defined below allow a client to navigate this model in order to discover
and manipulate multipath drivers and hardware. Each class in the diagram has a structure
containing properties (for example, MP_INITIATOR_PORT_PROPERTIES has properties for an
initiator port) and an API the get the properties (MP_GetInitiatorPortProperties). Other APIs exist
to allow the client to follow the associations in the diagram above. For example, the rightmost
vertical line represents an aggregation of target ports in a target port group;
MP_GetTargetPortOidList returns a list of target port oids (oids act something like pointers, more
details later). Other APIs change behavior by setting specific properties or by operating on
groups of objects.

Figure 4 Driver Representation of a Logical Unit with Multiple Paths below is a UML instance
diagram that depicts the OS/driver view of a configuration with four paths connected to the same
logical unit (for example, a RAID volume). Two initiator ports are connected to separate pairs of

Multipath Management API SNIA Technical Position 10
Version 1.0

target ports - one optimized and one non-optimized for the particular logical unit. The model
depicts the typical MP driver behavior of treating the multipath logical unit as an aggregation of
non-MP device files rather than an aggregation of paths.

OS sees each
LU 4 times
below MP
driver

Path
Logical Unit

Target Port Group

AccessState: Optimized

Target PortTarget Port

Target Port Group

AccessState: Standby

Target PortTarget Port

Initiator Port Initiator Port

Path
Logical Unit

Path
Logical Unit

Path
Logical Unit

Multipath Logical Unit

Figure 4 Driver Representation of a Logical Unit with Multiple Paths

Note that class/structure instances are not shared across plugins. But instances in separate
plugins may map to the same “real world” object. For example, multiple plugins may represent
the same initiator (HBA) port. A client would determine these ports are the same by comparing
the port name (for example, FC Port WWN) properties of the port instances from the different
plugins.

Installation and configuration of multipath drivers can be complex and hazardous. In some cases,
overlap between plugins could represent configurations that may be catastrophic for a customer.
This API does not enforce “best practices”; it assumes that the customer has installed drivers in a
“safe” manner – this API just reports on (and manipulates) the configuration.

3.2 Client Discovery of Optional Behavior
Without multipath drivers, it’s usually straightforward to get a list of all the disks attached to a
system – usually this is just a list of all the device files with names indicating they are disks. But
with MP drivers installed, it may be difficult to determine which device files are subsumed by a
virtual multipath device. And the multipath driver may add additional special names to the list of
disk devices. The primary objective of this API is to create a deterministic way for management
software (such as implementations of the SNIA SMI-S “Host Discovered Resources” profile) to
discover the storage resources attached to a server.

In addition to the discovery functions, this API also provides functions for active management of
multipath drivers – functions to control failover/failback and load balancing. These active
management APIs are optional.

Multipath Management API SNIA Technical Position 11
Version 1.0

In general, support for optional behavior is exposed through properties of plugins (and other
objects). For example, MP_PLUGIN_PROPERTIES has a property canActivateTPGs that
informs a client whether this plugin supports failover/failback commands.

3.2.1 Discovery of Load Balancing Behavior
This API has built-in support for common load balancing algorithms, but also allows plugins to
describe proprietary algorithms. These are simply exposed as opaque information that a client
can display or modify and are not actually interpreted by the API.

The client can determine the available load balance algorithms by looking at the
supportedLoadBalanceTypes properties of MP_PLUGIN_PROPERTIES returned by
MP_GetPluginProperties. If MP_LOAD_BALANCE_TYPE_PRODUCT is set in
supportedLoadBalanceTypes, then the client should also use MP_GetDeviceProductOidList and
MP_GetDeviceProductProperties to get a list of target product types supported by the plugin. If
there is an MP_DEVICE_PRODUCT_PROPERTIES instance with the same vendor, product, and
revision IDs as a specific logical unit, then the supportedLoadBalanceTypes property in that
MP_DEVICE_PRODUCT_PROPERTIES instance override the plugin-wide
supportedLoadBalanceTypes.

The client can determine the current load balance algorithm for a specific logical unit by looking at
the currentLoadBalanceType property of MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES
returned by MP_GetMPLogicalUnitProperties.

The client can set the load balance algorithm for a specific logical unit using
MP_GetMPLogicalUnitProperties and specifying a value other than
MP_LOAD_BALANCE_TYPE_UNKNOWN for currentLoadBalanceType.
MP_LOAD_BALANCE_TYPE_PRODUCT is only valid if vendor, product, and revision from
MP_GetMPLogicalUnitProperties match those in an instance of
MP_DEVICE_PRODUCT_PROPERTIES returned by MP_GetDeviceProductProperties.

The client can set a plugin-wide default using MP_SetPluginLoadBalanceType.

For example, imagine an MP driver from Yoyodyne Corporation supports the following load
balancing algorithms:

• Round Robin (the default)
• Least IO
• Two algorithms created by the driver-writers for any device types (known as YY1 and

YY2)
• An algorithm for one particular array model (the Acme 3500 array)
• The YY1 algorithm is not supported for Acme 3500 logical units

The driver does not allow the administrator to set different load balance types for different logical
units on a target.

There should be 1 instance of MP_PLUGIN_PROPERTIES with the following flags set in
supportedLoadBalanceTypes:

MP_LOAD_BALANCE_ROUNDROBIN 2 2h

MP_LOAD_BALANCE_TYPE_LEASTIO 8 8h

MP_LOAD_BALANCE_TYPE_PRODUCT 16 10h

MP_LOAD_BALANCE_TYPE_PROPRIETARY1 65536 10000h

MP_LOAD_BALANCE_TYPE_PROPRIETARY2 131072 20000h

The value of supportedLoadBalanceTypes in of MP_PLUGIN_PROPERTIES in hex would be
3001ah (the sum of these load balance type flags).

Multipath Management API SNIA Technical Position 12
Version 1.0

The value of defaultLoadBalanceType in MP_PLUGIN_PROPERTIES would be
MP_LOAD_BALANCE_ROUNDROBIN.

There will be an instance of MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES for each flag
65536 and up. This object has three fields, the index from above, a name for the algorithm and a
name for the vendor. So in this example, we’ll have of these objects:

• 65536, “YY1”, “Yoyodyne Corp.”
• 131072, “YY2”, “Yoyodyne Corp.”

Since MP_LOAD_BALANCE_TYPE_PRODUCT is set, there will also be an instance of
MP_DEVICE_PRODUCT_PROPERTIES for each device with special driver load support. In this
example, there will be one instance with vendor set to “ACME “, product set to “3500 “,
and revision set to four nulls (this driver supports all revisions of the ACME 3500). The
supportedLoadBalanceTypes for Acme 3500 will be set to 2001ah – the same as the plugin-wide
supportedLoadBalanceTypes but without the bit for the YY1 algorithm.

Any logical unit on an Acme 3500 array can have currentLoadBalanceType in
MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES set to any of the four load balance types in
the table above.

Any logical unit of non-Acme-3500 targets can have currentLoadBalanceType set to any of these
load balance types other than MP_LOAD_BALANCE_TYPE_PRODUCT.

3.2.2 Client Discovery of Failover/Failback Capabilities
Failover only applies to asymmetric access devices. A client can discover whether a logical unit
is on an asymmetric access device by looking at the
MP_MULTIPATH_LOGICAL_UNIT.asymmetric property.

MP_MULTIPATH_LOGICAL_UNIT. canActivateTPGs indicates support for the MP_ActivateTPGs
API – this API provides manual failover capabilities.

3.2.3 Client Discovery of a Driver’s OS Device File Name Behavior
Some multipath drivers leave the underlying OS Device File Names (those representing path
logical units) on this system. This behavior can be tested with
MP_PLUGIN_PROPERTIES.exposesPathDeviceFiles. If exposesPathDeviceFiles is set to false,
then the plugin will only expose a single Device File Name for a multipath logical unit.

If MP_PLUGIN_PROPERTIES.exposesPathDeviceFiles is true, then multiple Device File Names
are available for a multipath logical unit – one for each path.

Some multipath drivers create OS Device Files in non-standard locations. This behavior can be
tested with MP_PLUGIN_PROPERTIES.deviceFileNamespace. If this property is null, the
Device File Names associated with the plugin/driver match the “usual” platform names as
documented in A.1 Logical Unit osDeviceName. If deviceFileNamespace is non-null it is a simple
regular expression describing the format for Device File Names – documented in the
deviceFileNamespace property of MP_PLUGIN_PROPERTIES (section 4.24).

3.2.4 Client Discovery of Auto-Failback Capabilities
Auto-failback is a capability of some multipath drivers to resume use of a path when the path
transitions from unavailable to available. In some cases, this is accomplished with polling (the
driver attempts IOs on unavailable paths).

MP_PLUGIN_PROPERTIES.autoFailbackSupport describes the driver's support for auto-
failback. MP_AUTOFAILBACK_SUPPORT_PLUGIN indicates auto-failback is managed the
same across all devices. MP_AUTOFAILBACK_SUPPORT_MPLU indicates auto-failback
settings are set separately for each multipath logical unit.
MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU indicates that the both global and per-
multipath logical unit settings are supported.

Multipath Management API SNIA Technical Position 13
Version 1.0

If autoFailbackSupport is either MP_AUTOFAILBACK_SUPPORT_PLUGIN or
MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU, then these plugin properties are defined:

pluginAutofailbackEnabled
True if the administrator has requested that auto-failback be enabled for all paths
accessible via this plugin

failbackPollingRateMax
The maximum polling rate (in seconds) supported by the driver. Zero (0) indicates the
driver either does not poll for auto-failback or has not provided an interface to set the
polling rate.

currentFailbackPollingRate
The current polling rate (in seconds) for auto-failback. This cannot exceed
failbackPollingRateMax.

If autoFailbackSupport is either MP_AUTOFAILBACK_SUPPORT_MPLU or
MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU, then these multipath logical unit
(MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES) properties are defined:

autofailbackEnabled
MP_TRUE if the administrator has requested that auto-failback be enabled for this
multipath logical unit. If the plugin's autoFailbackSupport is
MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU, MP_UNKNOWN is valid and
indicates that multipath logical unit has auto-failback enabled if
pluginAutofailbackEnabled is true.

failbackPollingRateMax
The maximum polling rate (in seconds) supported by the driver. Zero (0) indicates the
driver either does not poll for auto-failback or has not provided an interface to set the
polling rate for multipath logical units. If this property and the plugin's
failbackPollingRateMax are non-zero, this value has precedence for the associate logical
unit.

currentFailbackPollingRate
The current polling rate (in seconds) for auto-failback. This cannot exceed
failbackPollingRateMax. If this property and the plugin's currentFailbackPollingRate are
non-zero, this value has precedence for the associate logical unit.

3.2.5 Client Discovery of Auto-Probing Capabilities
Auto-probing is an optional capability to validate operational paths that are not currently being
used.

MP_PLUGIN_PROPERTIES.autoProbingSupport describes the driver's support for auto-Probing.
MP_AUTOPROBING_SUPPORT_PLUGIN indicates auto-Probing is managed the same across
all devices. MP_AUTOPROBING_SUPPORT_MPLU indicates auto-Probing settings are set
separately for each multipath logical unit. MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU
indicates that the both global and per-multipath logical unit settings are supported.

If autoProbingSupport is either MP_AUTOPROBING_SUPPORT_PLUGIN or
MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU, then these plugin properties are defined:

pluginAutoProbingEnabled
True if the administrator has requested that auto-Probing be enabled for all paths
accessible via this plugin

probingPollingRateMax
The maximum polling rate (in seconds) supported by the driver. Zero (0) indicates the
driver either does not poll for auto-Probing or has not provided an interface to set the
polling rate.

currentProbingPollingRate

Multipath Management API SNIA Technical Position 14
Version 1.0

The current polling rate (in seconds) for auto-Probing. This cannot exceed
probingPollingRateMax.

If autoProbingSupport is either MP_AUTOPROBING_SUPPORT_MPLU or
MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU, then these multipath logical unit
properties are defined:

autoProbingEnabled
MP_TRUE if the administrator has requested that auto-Probing be enabled for this
multipath logical unit. If the plugin's autoProbingSupport is
MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU, MP_UNKNOWN is valid and
indicates that multipath logical unit has auto-Probing enabled if
pluginAutoProbingEnabled is true.

probingPollingRateMax
The maximum polling rate (in seconds) supported by the driver. Zero (0) indicates the
driver either does not poll for auto-Probing or has not provided an interface to set the
polling rate for multipath logical units. If this property and the plugin's
probingPollingRateMax are non-zero, this value has precedence for the associate logical
unit.

currentProbingPollingRate
The current polling rate (in seconds) for auto-Probing. This cannot exceed
probingPollingRateMax. If this property and the plugin's currentFailbackPollingRate are
non-zero, this value has precedence for the associate logical unit.

3.2.6 Client Discovery of Support for LU assignment to Target Port Groups
If an asymmetric access device allows logical units to be assigned to target port groups,
MP_TARGET_PORT_GROUP.supportsLuAssignment will be true. This indicates that
MP_AssignLogicalUnitToTPG API is available.

3.3 Events
A long-running application may subscribe to events and be asynchronously notified of changes.
The API has two types of events:

• Visibility changes – when objects appear or disappear

• Property changes – when properties in an object change

APIs allow clients to register or deregister for each type of event. Registration specifies the
address of a client-supplied callback method that is invoked when events occur. The client can
specify a specific object type (defaults to all object types). The client can specify a specific plugin
(defaults to all plugins). Multiple calls allow registration for a subset of object types and plugins.

The client can also specify “caller data” that may be used by the caller to correlate the event to
source of the registration. The plugin saves the caller data and returns it with each event.

See these sections for more detail about events: 4.10 MP_OBJECT_VISIBILITY_FN, 4.11
MP_OBJECT_PROPERTY_FN, 5.4 MP_DeregisterForObjectPropertyChanges, 5.5
MP_DeregisterForObjectPropertyChanges, 5.34 MP_RegisterForObjectPropertyChanges, and
5.35 MP_RegisterForObjectVisibilityChanges.

3.4 Terms
The terms that are used in this specification are defined in this section.

Auto-failback A capability of some multipath drivers to resume use of a path when
the path transitions from unavailable to available.

Multipath Management API SNIA Technical Position 15
Version 1.0

Auto-probing A capability of some multipath drivers to validate operational paths
that are not currently being used.

Available Paths The set of paths for a logical unit that may be considered for routing
I/O requests. For symmetric access devices, all paths are
considered available. For asymmetric access devices, all paths in
active target port groups are considered available.

Device File Device files are operating system files (for instance UNIX, Linux
etc.,) that facilitate communication with the system’s hardware and
peripherals.

Hexadecimal-
encoded binary
data

An ASCII character string used to denote the hexadecimal encoding
of a binary string of octets. It may only contain the ASCII characters
0-9, A-F, and a-f. Each byte of binary data is represented by two
hexadecimal characters.

Host A compute node connected to the SAN.

Initiator A SCSI device that initiates requests. Also known as a client. In
this document, initiator refers to an initiator port.

Logical Unit An addressable entity within a SCSI target. For example, RAID
arrays expose each virtual disk volume as a logical unit. When the
term “logical unit: is used in this specification and is not qualified as
a “multipath logical unit” or “path logical unit”, it refers to a logical
unit in a target device.

LUN Logical Unit Number

Multipath Logical
Unit

An object type of this API representing a “virtual “logical unit that
coalesces multiple Path Logical Units for the same underlying
device logical unit.

Object ID A unique identifier assigned to any object within the MP API.
Objects sometimes represent physical entities, e.g. initiator ports. At
other times, objects represent logical entities, e.g. target port
groups.

OID Object Identifier

Path An association between an initiator port, target port, and logical unit.
See Path Logical Unit.

Path Logical Unit An n object type of this API providing access to a single logical unit
through a single initiator port and single device port. Within this API,
each path (see Path) is modeled as a Path Logical Unit. The result
of multipath drivers is a single OS device file representing a
Multipath Logical Unit aggregating multiple Path Logical Units.

Multipath Management API SNIA Technical Position 16
Version 1.0

Persistent The quality of something being non-volatile. This usually means
that the associated data is recorded on some non-volatile medium
such as flash RAM or magnetic disk and that the data survives
beyond system reboots. Implicitly, this must also be readable from
the non-volatile medium.

Examples of persistent storage:

• Under Windows, the Registry would be a common place to
find persistently stored values (assuming that the values are
not stored as volatile).

Under any OS a file on magnetic hard disk would be persistent

Plugin A plugin is software, specifically written for an OS, HBA, or device
vendor, that provides support for one or more Multipath drivers. The
plugin’s job is to provide a bridge between the library’s interface and
the vendor’s multipath driver. A plugin is typically a loadable
module, for instance - a DLL in Windows and a shared object in
UNIX. A plugin is accessed by an application through the Multipath
Management API library.

The FC HBA API’s concept of a vendor library is the equivalent to a
plugin.

Product (or
Device Product)

A particular model of target device, identified by the vendor, product,
and revision IDs returned in the standard SCSI Inquiry response.

Target A SCSI device containing logical units and SCSI target ports that
receives commands from a SCSI imitator. Also known as a SCSI
server.

Target Port Group A set of target ports that are in the same target port access state at
all times.

Unicode Unicode is a system of uniquely identifying (numbering) characters
such that nearly any character in any language is identified.

UTF-81 Unicode Transformation Format, 8-bit encoding form. UTF-8 is the
Unicode Transformation Format that serializes a Unicode scalar
value as a sequence of one to four bytes.

1 Definition taken from the glossary of the Unicode Consortium web site. See
http://www.unicode.org/glossary/index.html.

3.5 API Programming Concepts
3.5.1 Library and Plugins
The Multipath Management API must be implemented using a combination of a library and
plugins.

The library provides an interface that applications use to perform Multipath management. Among
other things, the library is responsible for loading plugins and dispatching requests from a
management application to the appropriate plugin(s).

OS, HBA, or device vendors provide plugins to manage subsets of target devices. Typically, a
plugin will take a request in the generic format provided by the library and then translate that

Multipath Management API SNIA Technical Position 17
Version 1.0

request into a vendor specific format and forward the request onto the vendor’s device driver. In
practice, a plugin may use a DLL or shared object library to communicate with the device driver.
Also, it may communicate with multiple device drivers. Ultimately, the method a plugin uses to
accomplish its work is entirely vendor specific.

Although rare, two plugins may model the same real-world resource. This could apply to initiator
or target ports or even logical units. The client determines equivalence by testing the properties
that contains names/Ids reported by the hardware itself (such as Port WWNs for FC ports). If the
client application is operating across multiple hosts, the same approach is used to look for
occurrences of the same target port of logical unit connected to multiple hosts. This allows a
client to have a single instance that aggregates information from several plugins. One
consequence of this overlap is that multiple plugins may report the same event to the client.

This architecture has no boot-time requirements. Plugins are registered with the common library
when they are installed. This would typically be done when MP drivers (and/or management
clients) are installed on the system. The registration information is persisted – either in a registry
or in a configuration file (see the MP_RegisterPlugin API).

3.5.2 Object ID
The core element of the Multipath Management API is the object ID (OID). An object ID is a
structure that “uniquely” identifies an object. The reason uniquely is in quotes in the previous
sentence is that it is possible, though very unlikely, that an object ID would be reused and refer to
a different object.

An object ID consists of three fields:

1. An object type. This identifies the type of object, e.g. port, logical unit, etc., that the
object ID refers to.

2. An object owner identifier. This is a number that is used to uniquely identify the owner of
the object. Either the library or a plugin owns objects.

3. An object sequence number. This is a number used by the owner of an object, possibly
in combination with the object type, to identify an object.

The combination of these properties assures that object Ids are unique across plugins.

To a client that uses the library, object IDs shall be considered opaque. A client shall use only
documented APIs to access information found in the object ID.

There are several rules for object IDs that the library, plugins, and clients must follow. They are:

An object ID can only refer to one object at a time.

An object can only have one object ID that refers to it at any one time. It is not permissible to
have two or more object IDs that refer to the same object at the same time. In some cases this
may be difficult, but the rule still must be followed.

For example, suppose a HBA port is in a system. That HBA port will have an object ID. If the
HBA is removed and then reinserted (while the associated plugin is running) then one of two
things can happen:

• The HBA port can retain the same object ID as it had before it was removed

Or

• The HBA port can get a new object ID and the old object ID will no longer be usable.

Multipath Management API SNIA Technical Position 18
Version 1.0

This can only happen if the same HBA is reinserted. If a HBA is removed and another HBA is
inserted that has not been in the system while a particular instance of the library and plugins are
running then that HBA port must be given a new object ID.

The library and plugins can uniquely identify an object within their own object space by using
either the object sequence number or by using the object sequence number in combination with
the object type. Which method is used is up to the implementer of the library or plugin.

Object sequence numbers must be reused in a conservative fashion to minimize the possibility
that (due to wrapping of the sequence number) an object ID will ever refer to two (or more)
different objects in any one instance of the library or plugin. This rule for reuse only applies to a
particular instance of the library or plugin. Neither the library nor plugins are required or expected
to persist object sequence numbers across instances.

Because neither the library nor plugins are required to persist object sequence numbers a client
using the library must not use persisted object IDs across instances of itself.

Similarly, different instances of the library and plugins may use different object IDs to represent
the same physical entity.

3.5.3 Object ID List
An object ID list is a list of zero or more object IDs. There are several APIs, e.g.
MP_GetTargetPortOidList, that return object ID lists. Once a client is finished using an object ID
list the client must free the memory used by the list by calling the MP_FreeOidList API.

Multipath Management API SNIA Technical Position 19
Version 1.0

4 Constants and Structures

4.1 MP_WCHAR
Typedef’d as a wchar_t (wchar_t is part of the ISO C standard and is available is all recent C
compilers, though you may need special options to enable it).

4.2 MP_CHAR
Typedef’d as a char. Only used in contexts where wide characters cannot be used, such as
filenames and ASCII text returned from SCSI commands.

4.3 MP_BYTE
An 8-bit unsigned value. Typedef’d as an unsigned char.

4.4 MP_BOOL
Typedef’d to an MP_UINT32. A variable of this type can have either of the following values:

• MP_TRUE
This symbol has the value 1.

• MP_FALSE
This symbol has the value 0.

4.5 MP_XBOOL
Typedef’d to an MP_UINT32. This is an extended boolean. A variable of this type can have any
of the following values:

• MP_TRUE
This symbol has the value 1.

• MP_FALSE
This symbol has the value 0.

• MP_UNKNOWN
This symbol has the value FFFFFFFFh.

4.6 MP_UINT32
A 32-bit unsigned integer value.

4.7 MP_UINT64
A 64-bit unsigned integer value.

4.8 MP_STATUS
Status Values

MP_STATUS_SUCCESS
This status value is returned when the requested operation is successfully carried out.
This symbol has a value of 0.

Multipath Management API SNIA Technical Position 20
Version 1.0

MP_STATUS_INVALID_PARAMETER
This status value is returned when parameter(s) passed to an API is detected to be
invalid or inappropriate for a particular API parameter. If the parameter is an object ID,
this status indicates that the object type subfield is defined in this specification, but is not
appropriate for this API. This symbol has a value of 1.

MP_STATUS_UNKNOWN_FN
This status value is returned when a client function passed into the API is not a
previously registered/known function. This symbol has a value of 2.

MP_STATUS_FAILED
This status value is returned when the requested operation could not be carried out. This
symbol has a value of 3.

MP_STATUS_INSUFFICIENT_MEMORY
This status value is returned when the API could allocate the memory required to
complete the requested operation. This symbol has a value of 4.

MP_STATUS_INVALID_OBJECT_TYPE
This status value is returned when an object id includes a type subfield that is not defined
in this specification. This symbol has a value of 5.

MP_STATUS_OBJECT_NOT_FOUND
This status value is returned when the object associated with the id specified in the API
could not be located or has been deleted. Note that an invalid object type is covered by
MP_STATUS_INVALID_OBJECT_TYPE so this status is limited to invalid object owner
identifier or sequence number. This symbol has a value of 6.

MP_STATUS_UNSUPPORTED
This status value is returned when the implementation does not support the requested
function. This symbol has a value of 7.

MP_STATUS_FN_REPLACED
This status value is returned when a client function passed into the API replaces a
previously registered function. This symbol has a value of 8.

MP_STATUS_ACCESS_STATE_INVALID
This status value is returned when a device processing MP_SetTPGAccess returns a
status indicating the caller is attempting to establish an illegal combination of access
states. This symbol has a value of 9.

MP_STATUS_PATH_NONOPERATIONAL
This status is returned when communication cannot be established with the path selected
by the caller. This symbol has a value of 10.

MP_STATUS_TRY_AGAIN
This status is returned when the plugin/driver is unable to complete the request at this
time, but may be able to complete it later. This symbol has a value of 11.

MP_STATUS_NOT_PERMITTED
The operation is not permitted in the current configuration, but may be permitted in other
configurations. This symbol has a value of 12.

4.9 MP_PATH_STATE
MP_PATH_STATE is an enumeration used to indicate the status of a path. This status is not
returned by APIs, but is included in MP_PATH_LOGICAL_UNIT_PROPERTIES along with other
path properties.

Constants
#define MP_PATH_STATE_OKAY 0
#define MP_PATH_STATE_PATH_ERR 1

Multipath Management API SNIA Technical Position 21
Version 1.0

#define MP_PATH_STATE_LU_ERR 2
#define MP_PATH_STATE_RESERVED 3
#define MP_PATH_STATE_REMOVED 4
#define MP_PATH_STATE_TRANSITIONING 5
#define MP_PATH_STATE_OPERATIONAL_CLOSED 6
#define MP_PATH_STATE_INVALID_CLOSED 7
#define MP_PATH_STATE_OFFLINE_CLOSED 8
#define MP_PATH_STATE_UNKNOWN 9

typedef MP_UINT32 MP_PATH_STATE;

Definitions
MP_PATH_STATE_OKAY

The path is okay.

MP_PATH_STATE_PATH_ERR
The path is unusable due to an error on this path and no SCSI status was received.

MP_PATH_STATE_LU_ERR
A SCSI status was received for an I/O through this path indicating an error on the logical
unit.

MP_PATH_STATE_RESERVED
The path is unusable due to a SCSI Reservation.

MP_PATH_STATE_REMOVED
The path is not used because the OS or other drivers marked the path unusable

MP_PATH_TRANSIITIONING
The path is transitioning between two valid states

MP_PATH_STATE_OPERATIONAL_CLOSED
The path appears operational, but has not been opened. This state only applies to
platforms that allow paths to be opened or closed.

MP_PATH_STATE_INVALID_CLOSED
No open was attempted but background probing determined that the path was dead.

MP_PATH_STATE_OFFLINE_CLOSED
The path appears operational, but has not been opened.

MP_PATH_STATE_UNKNOWN
The path is not operational, but the exact cause is not known.

Remarks
The error states are generally discovered when an I/O requests do not complete with normal
status. The I/O request involved in this state change may have been issued by the multipath
plugin/driver or by a user application. This specification does not require that the
plugin/driver poll for error conditions. If these error states are known, they may be returned; if
details are not known, MP_PATH_STATE_UNKNOWN should be returned.

4.10 MP_OBJECT_VISIBILITY_FN
Format

typedef void (* MP_OBJECT_VISIBILITY_FN)(
 /* in */ MP_BOOL becomingVisible,

 /* in */ MP_OID_LIST *pOidList,
 /* in */ void *pCallerData
);

Multipath Management API SNIA Technical Position 22
Version 1.0

Parameters
becomingVisible

A MP_BOOL value indicating that the list of object specified by pOidList have become
visible or have disappeared. A value of MP_TRUE indicates the objects have become
visible. A value of MP_FALSE indicates the objects have disappeared.

pOidList
A list of IDs of objects whose visibility is being changed. All objects referenced must be
of the same type (different types may have different pCallerData values). All objects
referenced must all have become visible or have disappeared.

pCallerData
The pCallerData passed into MP_RegisterForObjectVisibilityChanges. This may be used
by the caller to correlate the event to source of the registration.

Remarks
This type is used to declare client functions that can be used with the
MP_RegisterForObjectVisibilityChanges and MP_DeregisterForObjectVisibilityChanges APIs.

When the client function is finished using the list referenced by pOidList, it must free the
memory used by the list by calling MP_FreeOidList.

4.11 MP_OBJECT_PROPERTY_FN
Format

typedef void (* MP_OBJECT_PROPERTY_FN)(
 /* in */ MP_OID_LIST *pOidList,
 /* in */ void *pCallerData
);

Parameters
pOidList

A list of IDs of objects whose property values are being changed. All objects referenced
must be of the same type (different types may have different pCallerData values)

pCallerData
The pCallerData passed into MP_RegisterForObjectPropertyChanges. This may be
used by the caller to correlate the event to source of the registration.

Remarks
This type is used to declare client functions that can be used with the
MP_RegisterForObjectPropertyChanges and MP_DeregisterForObjectPropertyChanges
APIs.

When the client function is finished using the list referenced by pOidList, it must free the
memory used by the list by calling MP_FreeOidList.

4.12 MP_OBJECT_TYPE
MP_OBJECT_TYPE is an enumeration used to differentiate API objects that are referenced by
object Ids (odes). MP_OBJECT_TYPE is not directly used by clients, but is used to form object
Ids.

Constants
#define MP_OBJECT_TYPE_UNKNOWN 0
#define MP_OBJECT_TYPE_PLUGIN 1

Multipath Management API SNIA Technical Position 23
Version 1.0

#define MP_OBJECT_TYPE_INITIATOR_PORT 2
#define MP_OBJECT_TYPE_TARGET_PORT 3
#define MP_OBJECT_TYPE_MULTIPATH_LU 4
#define MP_OBJECT_TYPE_PATH_LU 5
#define MP_OBJECT_TYPE_DEVICE_PRODUCT 6
#define MP_OBJECT_TYPE_TARGET_PORT_GROUP 7
#define MP_OBJECT_TYPE_PROPRIETARY_LOAD_BALANCE 8

typedef MP_UINT32 MP_OBJECT_TYPE;

Definitions
MP_OBJECT_TYPE_UNKNOWN

The object has an unknown type. If an object has this type its most likely an uninitialized
object.

MP_OBJECT_TYPE_PLUGIN
Object type to identify a plugin module.

MP_OBJECT_TYPE_INITIATOR_PORT
Object type to identify an initiator port.

MP_OBJECT_TYPE_TARGET_PORT
Object type to identify an initiator port.

MP_OBJECT_TYPE_MULTIPATH_LU
Object type to identify the multipath Logical Unit.

MP_OBJECT_TYPE_PATH_LU
Object type to identify the path Logical Unit.

MP_OBJECT_TYPE_DEVICE_PRODUCT
Object type to identify the Device product.

MP_OBJECT_TYPE_TARGET_PORT_GROUP
Object type to identify the target port group.

MP_OBJECT_TYPE_PROPRIETARY_LOAD_BALANCE
Object type to identify a proprietary load balance type.

4.13 MP_OID
Format

typedef struct _MP_OID
{
 MP_OBJECT_TYPE objectType;
 MP_UINT32 ownerId;
 MP_UINT64 objectSequenceNumber;
} MP_OID;

Fields
objectType

Specifies the type of object. When an object ID is supplied as a parameter to an API the
library uses this value to ensure that the supplied object’s type is appropriate for the API
that was called.

ownerId
A number determined by the library that it uses to uniquely identify the owner of an
object. The owner of an object is either the library itself or a plugin. When an object ID is
supplied as a parameter to an API the library uses this value to determine if it should
handle the call itself or direct the call to one or more plugins.

Multipath Management API SNIA Technical Position 24
Version 1.0

objectSequenceNumber
A number determined by the owner of an object, that is used by the owner possibly in
combination with the object type, to uniquely identify an object.

Remarks
Clients of the API shall treat this structure as opaque. Appropriate APIs, e.g.
MP_GetObjectType and MP_GetAssociatedPluginOid, shall be used to extract information
from the structure.

4.14 MP_OID_LIST
Format

typedef struct _MP_OID_LIST
{
 MP_UINT32 oidCount;
 MP_OID oids[1];
} MP_OID_LIST;

Fields
oidCount

The number of object IDs in the oids array.

oids
A variable length array of zero or more object IDs. There are oidCount objects IDs in this
array.

Remarks
This structure is used by a number of APIs to return lists of objects. Any instance of this
structure returned by an API must be freed by a client using the MP_FreeOidList API.

Although oids is declared to be an array of one MP_OID structure it can in fact contain any
number of MP_OID structures.

4.15 MP_PORT_TRANSPORT_TYPE
Constants

#define MP_PORT_TRANSPORT_TYPE_UNKNOWN 0
#define MP_PORT_TRANSPORT_TYPE_MPNODE 1
#define MP_PORT_TRANSPORT_TYPE_FC 2
#define MP_PORT_TRANSPORT_TYPE_SPI 3
#define MP_PORT_TRANSPORT_TYPE_ISCSI 4
#define MP_PORT_TRANSPORT_TYPE_IFB 5

typedef MP_UINT32 MP_PORT_TRANSPORT_TYPE;

Definitions
MP_PORT_TRANSPORT_TYPE_UNKNOWN

The associated port is of an unknown transport type

MP_PORT_TRANSPORT_TYPE_MPNODE
For initiator ports only, the associated port is known to be a virtual construct of an
underlying multipath driver.

MP_PORT_TRANSPORT_TYPE_FC
The associated port represents a Fibre Channel port. The Name for the port should be a
port WWN formatted as 16 unseparated hexadecimal digits, with no leading 0x.

Multipath Management API SNIA Technical Position 25
Version 1.0

MP_PORT_TRANSPORT_TYPE_SPI
The associated port represents a parallel SCSI port.

MP_PORT_TRANSPORT_TYPE_ISCSI
The associated port represents an iSCSI initiator or target port. The port name should be
an iSCSI name in “iqn”, “eui”, or “naa” format and include “’,i,0x” followed by an ISID (for
initiator ports) or “,t,0x” followed by a TGPID (for target ports).

MP_PORT_TRANSPORT_TYPE_IFB
The associated port represents a mapped Fibre channel port on an InfiniBand initiator.
The name should be formatted as a FC PortWWN.

Remarks
This type serves two purposes. It identifies the type of transport and the format of the
PORT_ID property.

4.16 MP_ACCESS_STATE_TYPE
Constants

#define MP_ACCESS_STATE_ACTIVE_OPTIMIZED 0h
#define MP_ACCESS_STATE_ACTIVE_NONOPTIMIZED 1h
#define MP_ACCESS_STATE_STANDBY 2h
#define MP_ACCESS_STATE_UNAVAILABLE 3h
#define MP_ACCESS_STATE_TRANSITIONING Fh
#define MP_ACCESS_STATE_ACTIVE 10h

typedef MP_UINT32 MP_ACCESS_STATE_TYPE;

Definitions
MP_ACCESS_STATE_ACTIVE_OPTIMIZED

“All target ports within a target port group should be capable of immediately accessing
the logical unit.” 1

MP_ACCESS_STATE_ACTIVE_NONOPTIMIZED
“The processing of some … commands may operate with lower performance than they
would if the target port were in the active/optimized target port …access state.” 1

MP_ACCESS_STATE_STANDBY
The logical unit only supports a small set of management commands and no data
transfer commands.

MP_ACCESS_STATE_UNAVAILABLE
“The unavailable target port … access state is intended for situations when the target port
accessibility to a logical unit may be severely restricted due to SCSI target device
limitations (e.g., hardware errors).” 1

MP_ACCESS_STATE_TRANSITIONING
Indicates the target device is in the process of transitioning between access states. This
value cannot be specified by a client; but can be exposed to clients as a property of a
target port group.

MP_ACCESS_STATE_ACTIVE
Used when the client is requesting that target port groups be activated (using the
MP_SetTPGAccess API) but does not care whether these port groups are given an
active optimized or active non-optimized state. This value will not be returned in a
property. This value is not defined in the T10 specifications.
1 These descriptions are quoted or paraphrased from SCSI Primary Commands 3
specification.

Multipath Management API SNIA Technical Position 26
Version 1.0

Remarks
This enumerated type provides the target port (group) states as described in SPC3.

4.17 MP_LOAD_BALANCE_TYPE
Constants

#define MP_LOAD_BALANCE_TYPE_UNKNOWN 0,
#define MP_LOAD_BALANCE_TYPE_ROUNDROBIN 1<<0,
#define MP_LOAD_BALANCE_TYPE_LEASTBLOCKS 1<<1,
#define MP_LOAD_BALANCE_TYPE_LEASTIO 1<<2,
#define MP_LOAD_BALANCE_TYPE_DEVICE_PRODUCT 1<<3,
#define MP_LOAD_BALANCE_TYPE_LBA_REGION 1<<4,
#define MP_LOAD_BALANCE_TYPE_FAILOVER_ONLY 1<<5,
#define MP_LOAD_BALANCE_TYPE_PROPRIETARY1 1<<16,
#define MP_LOAD_BALANCE_TYPE_PROPRIETARY2 1<<17
 // additional proprietary types

typedef MP_UINT32 MP_LOAD_BALANCE_TYPE;

Definitions
MP_LOAD_BALANCE_TYPE_UNKNOWN

The load balance object has an unknown type. If the load balance field has this type
then, it is most likely an uninitialized object.

MP_LOAD_BALANCE_TYPE_ROUNDROBIN
Load balancing object type that is associated with the algorithm that performs load
balancing in a round robin manner.

MP_LOAD_BALANCE_TYPE_LEASTBLOCKS
Load balancing object type that is associated with the algorithm that performs load
balancing using the least blocks as a criteria to select a path for forwarding the request.

MP_LOAD_BALANCE_TYPE_LEASTIO
Load balancing object type that is associated with the algorithm that performs load
balancing using the least used IO path as a criteria for forwarding the request.

MP_LOAD_BALANCE_TYPE_DEVICE_PRODUCT
The load balance algorithm is optimized for the device specified in the
MP_DEVICE_PRODUCT_PROPERTIES class associated with the logical unit.

MP_LOAD_BALANCE_TYPE_LBA_REGION
Load balancing object type that is associated with the algorithm that performs load
balancing using the sequential stream detection algorithm.

MP_LOAD_BALANCE_TYPE_FAILOVER_ONLY
Set in MP_DEVICE_PRODUCT_PROPERTIES when the plugin/driver has determined
that the device supports SCSI 2 RESERVE/RELEASE. Used by API clients to indicate
that SCSI 2 reservations are in use and multipathing is only to be used for failover.

MP_LOAD_BALANCE_TYPE_PROPRIETARYx
The load balance algorithm is proprietary. This bit mask supports up to sixteen
proprietary types.

Remarks
Plugin support for device-type specific load balance types is expressed through instances of
MP_DEVICE_PRODUCT_PROPERTIES. If this property is
MP_LOAD_BALANCE_TYPE_DEVICE_PRODUCT then the vendor, product, and revision
properties of the logical unit must match those of instances of

Multipath Management API SNIA Technical Position 27
Version 1.0

MP_DEVICE_PRODUCT_PROPERTIES. See
MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES.

4.18 MP_PROPRIETARY_PROPERTY
Format

typedef struct _MP_PROPRIETARY_PROPERTY
{
 MP_WCHAR name[16];
 MP_WCHAR value[48];
} MP_LIBRARY_PROPERTIES;

Fields
name

A null terminated Unicode string containing the name of the proprietary property.

value
A null terminated Unicode string containing the value associated with the proprietary
property.

Remarks
A name and value for a proprietary property. Arrays of proprietary properties are included in
some data structures.

4.19 MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES
Format

typedef struct _MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES
{
 MP_LOAD_BALANCE_TYPE typeIndex;
 MP_WCHAR name[256];
 MP_WCHAR vendorName[256];
 MP_UINT32 proprietaryPropertyCount;
 MP_PROPRIETARY_PROPERTY proprietaryProperties[8];
} MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES;

Fields
typeIndex

The value (65536 or greater) representing a vendor-specific load balance algorithm.

name
A name for the vendor-specific load-balancing algorithm. This name is only meaningful
to a vendor-specific client application.

vendorName
A name for the vendor associated with the load-balancing algorithm.

proprietaryPropertyCount
The count of proprietary properties (less that or equal to eight) supported.

proprietaryProperties
A list of proprietary property name/value pairs.

Remarks
This structure is optional and allows a vendor to add up to 16 vendor-specific load-balance
algorithms to the load balance bit maps used in logical unit and plugin properties.

See MP_LOAD_BALANCE_TYPE

Multipath Management API SNIA Technical Position 28
Version 1.0

4.20 MP_LOGICAL_UNIT_NAME_TYPE
Constants

#define MP_LU_NAME_TYPE_UNKNOWN 0
#define MP_LU_NAME_TYPE_VPD83_TYPE1 1
#define MP_LU_NAME_TYPE_VPD83_TYPE2 2
#define MP_LU_NAME_TYPE_VPD83_TYPE3 3

 #define MP_LU_NAME_TYPE_DEVICE_SPECIFIC 4

typedef MP_UINT32 MP_LOGICAL_UNIT_NAME_TYPE;

Definitions
MP_LOGICAL_UNIT_NAME_TYPE_UNKOWN

The interpretation of the name for the logical unit is unknown. Use of this value is
discouraged and should only be used if the name is derived from some other driver rather
than directly from a SCSI Inquiry command.

MP_LU_NAME_TYPE_VPD83_TYPE3
The name is derived from SCSI Inquiry VPD page 83h, Association 0, Type 3.

MP_LU_NAME_TYPE_VPD83_TYPE2
The name is derived from SCSI Inquiry VPD page 83h, Association 0, Type 2.

MP_LU_NAME_TYPE_VPD83_TYPE1
The name is derived from SCSI Inquiry VPD page 83h, Association 0, Type 1.

MP_LU_NAME_TYPE_DEVICE_SPECIFIC
The name is derived from a device product specific command.

Remarks
SCSI Primary Commands 3 (SPC3) specifications allow for several different representations
of logical unit names. This property is an enumerated type for commonly used formats.

4.21 MP_LIBRARY_PROPERTIES
Format

typedef struct _MP_LIBRARY_PROPERTIES
{
 MP_UINT32 supportedMpVersion;
 MP_WCHAR vendor[256];
 MP_WCHAR implementationVersion[256];
 MP_CHAR fileName[256];
 MP_WCHAR buildTime[256];
} MP_LIBRARY_PROPERTIES;

Fields
supportedMpVersion

The version of the Multipath Management API implemented by the library. The value
returned by a library for the API as described in this document is one.

vendor
A null terminated Unicode string containing the name of the vendor that created the
binary version of the library.

implementationVersion
A null terminated Unicode string containing the implementation version of the library from
the vendor specified in vendor.

fileName

Multipath Management API SNIA Technical Position 29
Version 1.0

A null terminated ASCII string ideally containing the path and file name of the library that
is filling in this structure.

If the path cannot be determined then this field will contain only the name (and extension
if applicable) of the file of the library. If this cannot be determined then this field shall be
an empty string.

buildTime
The time and date that the library was built.

Remarks

4.22 MP_AUTOFAILBACK_SUPPORT
Constants

#define MP_AUTOFAILBACK_SUPPORT_NONE 0
#define MP_AUTOFAILBACK_SUPPORT_PLUGIN 1
#define MP_AUTOFAILBACK_SUPPORT_MPLU 2
#define MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU 3

typedef MP_UINT32 MP_AUTOFAILBACK_SUPPORT;

Definitions
MP_AUTOFAILBACK_SUPPORT_NONE

The implementation does not support auto-failback.

MP_AUTOFAILBACK_SUPPORT_PLUGIN
The implementation supports auto-failback properties and APIs across the entire plugin.

MP_AUTOFAILBACK_SUPPORT_MPLU
The implementation supports auto-failback properties and APIs for individual multipath
logical units.

MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU
The implementation supports auto-failback properties and APIs for plugins and individual
multipath logical units.

Remarks
Auto-failback is the capability of the implementation to discover that a path has reverted to a
usable state and to resume using the path. If the implementation supports auto-failback, then
it supports the MP_SetFailbackPollingRate API or must assure MP_PLUGIN_PROPERTIES
failbackPollingRateMax is set to 0 (indicating polling is not performed or the rate is not
tunable).

4.23 MP_AUTOPROBING_SUPPORT
Constants

#define MP_AUTOPROBING_SUPPORT_NONE 0
#define MP_AUTOPROBING_SUPPORT_PLUGIN 1
#define MP_AUTOPROBING_SUPPORT_MPLU 2
#define MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU 3

typedef MP_UINT32 MP_AUTOPROBING_SUPPORT;

Definitions
MP_AUTOPROBING_SUPPORT_NONE

The implementation does not support auto-probing.

Multipath Management API SNIA Technical Position 30
Version 1.0

MP_AUTOPROBING_SUPPORT_PLUGIN
The implementation supports auto-probing properties and APIs across the entire plugin.

MP_AUTOPROBING_SUPPORT_MPLU
The implementation supports auto-probing properties and APIs for individual multipath
logical units.

MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU
The implementation supports auto-probing properties and APIs for plugins and individual
multipath logical units.

Remarks
Auto-probing is the capability of the implementation to discover state changes in paths that
are not being used.. Paths may not be used because of administrative weight or path
override configurations. If the implementation supports auto-probing, then it supports the
MP_SetProbingPollingRate API or must assure MP_PLUGIN_PROPERTIES
probingPollingRateMax is set to 0 (indicating polling is not performed or the rate is not
tunable).

4.24 MP_PLUGIN_PROPERTIES
Format

typedef struct _MP_PLUGIN_PROPERTIES
{
 MP_UINT32 supportedMpVersion;
 MP_WCHAR vendor[256];
 MP_WCHAR implementationVersion[256];
 MP_CHAR fileName[256];
 MP_WCHAR buildTime[256];
 MP_WCHAR driverVendor[256];
 MP_CHAR driverName[256];
 MP_WCHAR driverVersion[256];
 MP_UINT32 supportedLoadBalanceTypes;
 MP_BOOL canSetTPGAccess;
 MP_BOOL canOverridePaths;
 MP_BOOL exposesPathDeviceFiles;
 MP_CHAR deviceFileNamespace[256];
 MP_BOOL onlySupportsSpecifiedProducts;
 MP_UINT32 maximumWeight;
 MP_AUTOFAILBACK_SUPPORT autoFailbackSupport;
 MP_BOOL pluginAutoFailbackEnabled;
 MP_UINT32 failbackPollingRateMax;
 MP_UINT32 currentFailbackPollingRate;
 MP_AUTOPROBING_SUPPORT autoProbingSupport;
 MP_BOOL pluginAutoProbingEnabled;
 MP_UINT32 probingPollingRateMax;
 MP_UINT32 currentProbingPollingRate;
 MP_LOAD_BALANCE_TYPE defaultloadBalanceType
 MP_UINT32 proprietaryPropertyCount;
 MP_PROPRIETARY_PROPERTY proprietaryProperties[8];
} MP_PLUGIN_PROPERTIES;

Fields
supportedMpVersion

The version of the Multipath Management API implemented by a plugin. The value
returned by a library for the API as described in this document is one.

Multipath Management API SNIA Technical Position 31
Version 1.0

vendor
A null terminated Unicode string containing the name of the vendor that created the
binary version of the plugin.

implementationVersion
A null terminated Unicode string containing the implementation version of the plugin from
the vendor specified in vendor.

fileName
A null terminated ASCII string ideally containing the path and file name of the plugin that
is filling in this structure.

If the path cannot be determined then this field will contain only the name (and extension
if applicable) of the file of the plugin. If this cannot be determined then this field will be an
empty string.

buildTime
The time and date that the plugin that is specified by this structure was built.

driverVendor
A null terminated Unicode string containing the name of the multipath driver vendor
associated with this plugin.

driverName
A null terminated ASCII string containing the name of the multipath driver associated with
the plugin.

driverVersion
A null terminated Unicode string containing the version number of the multipath driver.

supportedLoadBalanceTypes
A set of flags representing the load balance types (MP_LOAD_BALANCE_TYPES)
supported by the plugin/driver as a plugin-wide property.

canSetTPGAccess
A boolean indicating whether the implementation supports activating target port groups.

canOverridePaths
A boolean indicating whether the implementations supports overriding paths. Setting this
to true indicates MP_SetOverridePath and MP_CancelOverridePath are supported.

exposesPathDeviceFiles
A boolean indicating whether the implementation exposes (or leaves exposed) device
files for the individual paths encapsulated by the multipath device file. This is typically
true for MP drivers that sit near the top of the driver stack.

deviceFileNamespace
A string representing the primary file names the driver uses for multipath logical units, if
those filenames do not match the names in Appendix A.1 Logical Unit osDeviceName.
The name is expressing in the following format:
 ‘*’ represents one or more alphanumeric characters
 ‘#’ represents a string of consecutive digits (e.g. ‘5’, ‘123’)
 ‘%’ represents a string of hexadecimal digits (e.g. ‘6101a45’)
 ‘\’ is an escape character for literal presentation of *, #, or % (e.g. ‘lu\#5’)
 any other character is interpreted literally
For example, “/dev/vx/dmp/*”

If the multipath driver creates multipath logical unit device file names in the same manner
as OS device files, then this property should be left null.

onlySupportsSpecifiedProducts
A boolean indicating whether the driver limits multipath capabilities to certain device
types. If true, then the driver only provides multipath support to devices exposed through

Multipath Management API SNIA Technical Position 32
Version 1.0

MP_DEVICE_PRODUCT_PROPERTIES instances. If false, then the driver supports any
device that provides standard SCSI logical unit identifiers.

maximumWeight
Describes the range of administer settable path weights supported by the driver. A driver
with no path preference capabilities should set this property to zero. A driver with the
ability to enable/disable paths should set this property to 1. Drivers with more weight
settings can set the property appropriately.

autoFailbackSupport
An enumerated type indicating whether the implementation supports auto-failback at the
plugin level, the multipath logical unit level, both levels or whether auto-failback is
unsupported.

pluginAutoFailbackEnabled
A boolean indicating that plugin-wide auto-failback is enabled. This property is undefined
if autoFailbackSupport is MP_AUTOFAILBACK_SUPPORT_NONE or
MP_AUTOFAILBACK_SUPPORT_MPLU.

failbackPollingRateMax
The maximum plugin-wide polling rate (in seconds) for auto-failback supported by the
driver. Undefined if autofailbackSupport is MP_AUTOFAILBACK_SUPPORT_NONE or
MP_AUTOFAILBACK_SUPPORT_MPLU. If the plugin/driver supports auto-failback
without polling or does not provide a way to set the polling rate, then this must be set to
zero (0). This value is set by the plugin and cannot be modified by users.

currentFailbackPollingRate
The current plugin-wide auto-failback polling rate (in seconds). Undefined if
autofailbackSupport is MP_AUTOFAILBACK_SUPPORT_NONE or
MP_AUTOFAILBACK_SUPPORT_MPLU. Cannot be more that failbackPollingRateMax.

autoProbingSupport
An enumerated type indicating whether the implementation supports auto-probing at the
plugin level, the multipath logical unit level, both levels or whether auto-probing is
unsupported.

pluginAutoProbingEnabled
A boolean indicating that plugin-wide auto-probing is enabled. This property is undefined
if autoProbingSupport is MP_AUTOPROBING_SUPPORT_NONE or
MP_AUTOPROBING_SUPPORT_MPLU.

probingPollingRateMax
The maximum plugin-wide polling rate (in seconds) for auto-probing supported by the
driver. Undefined if autoProbingSupport is MP_AUTOPROBING_SUPPORT_NONE or
MP_AUTOPROBING_SUPPORT_MPLU. If the plugin/driver supports auto-probing
without polling or does not provide a way to set the probing polling rate, then this must be
set to zero (0). This value is set by the plugin and cannot be modified by users.

currentProbingPollingRate
The current plugin-wide auto-probing polling rate (in seconds). Undefined if
autoProbingSupport is MP_AUTOPROBING_SUPPORT_NONE or
MP_AUTOPROBING_SUPPORT_MPLU. Cannot be more that probingPollingRateMax.

defaultLoadBalanceType
The load balance type that will be used by the driver for devices (without a corresponding
MP_DEVICE_PRODUCT_PROPERTIES instance) unless overridden by the
administrator. Any logical unit with vendor, product, and revision properties matching a
MP_DEVICE_PRODUCT_PROPERTIES instance will default to a device-specific load
balance type.

proprietaryPropertyCount
The count of proprietary properties (less that or equal to eight) supported.

Multipath Management API SNIA Technical Position 33
Version 1.0

proprietaryProperties
A list of proprietary property name/value pairs.

Remarks

4.25 MP_DEVICE_PRODUCT_PROPERTIES
Format

typedef struct _MP_DEVICE_PRODUCT_PROPERTIES
 {
 MP_CHAR vendor[8];
 MP_CHAR product[16];
 MP_CHAR revision[4]

 MP_UINT32 supportedLoadBalanceTypes;
 } MP_DEVICE_PRODUCT_PROPERTIES;

Fields
vendor

Eight bytes of ASCII data identifying the vendor of the device product. Corresponds to the
VENDOR IDENTIFICATION field in the SCSI INQUIRY response.

product
Sixteen bytes of ASCII data. Corresponds to the PRODUCT IDENTIFICATION field in
the SCSI INQUIRY response. This field can be set with null in all bytes if all devices with
the same vendor and revision fields are treated identically by the plugin.

revision
Four bytes of ASCII data. Corresponds to the PRODUCT REVISION LEVEL field in the
SCSI INQUIRY response. This field can be set with null in all bytes if all devices with
the same vendor and product fields are treated identically by the plugin.

supportedLoadBalanceTypes
A set of flags representing the load balance types (MP_LOAD_BALANCE_TYPES)
supported by the device product instance.

Remarks
See the remarks under MP_LOAD_BALANCE_TYPE.

4.26 MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES
Format

typedef struct _MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES
{
 MP_CHAR vendor[8];
 MP_CHAR product[16];
 MP_CHAR revision[4];
 MP_CHAR name[256];
 MP_LOGICAL_UNIT_NAME_TYPE nameType;
 MP_CHAR deviceFileName[256];
 MP_BOOL asymmetric;
 MP_OID overridePath;
 MP_LOAD_BALANCE_TYPE currentLoadBalanceType;
 MP_UINT32 logicalUnitGroupID;
 MP_XBOOL autoFailbackEnabled;
 MP_UINT32 failbackPollingRateMax;
 MP_UINT32 currentFailbackPollingRate;
 MP_XBOOL autoProbingEnabled;

Multipath Management API SNIA Technical Position 34
Version 1.0

 MP_UINT32 probingPollingRateMax;
 MP_UINT32 currentProbingPollingRate
 MP_UINT32 proprietaryPropertyCount;
 MP_PROPRIETARY_PROPERTY proprietaryProperties[8];
} MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES;

Fields
vendor

Eight bytes of ASCII data identifying the vendor of the device product. Corresponds to the
VENDOR IDENTIFICATION field in the SCSI INQUIRY response.

product
Sixteen bytes of ASCII data. Corresponds to the PRODUCT IDENTIFICATION field in
the SCSI INQUIRY response. This field can be set with null in byte 0 if all devices with
the same vendor field are treated identically by the plugin.

revision
Four bytes of ASCII data. Corresponds to the PRODUCT REVISION LEVEL from the
SCSI standard inquiry response. This field can be set with null in byte 0 if all devices with
the same vendor and product fields are treated identically by the plugin.

name
The name of the device derived from SCSI Inquiry data If the name is derived from
SCSI Inquiry VPD page 83h and the Code Set field is 1 (binary), it is translated to
hexadecimal-encoded binary.

nameType
The source of the name property.

deviceFileName
The name of the device file representing the consolidated multi-path device. This name
must comply with appendix A.1 Logical Unit osDeviceName.

asymmetric
A boolean indicating whether the underlying logical unit has asymmetric access.

overridePath
The ID of a path object only set when an administrator explicitly sets a path.

currentloadBalanceType
The current load balancing preference assigned to this logical unit.

logicalUnitGroupID
The identifier shared by all logical units in a target device that always shared a common
access state. If an API request (MP_SetTPGAccess, MP_EnablePath, MP_DisablePath)
forces IOs through a Target Port Group with a different access state, then the target
device will force all logical units with a common logicalUnitGroupID to the same access
state change.

This property shall correspond to the SCSI Logical Unit Group Identifier in an Inquiry VPD
page 83h response. If the target device does not support this SCSI identifier and the
plugin understands a proprietary technique for determining groups of logical units that
share access state, then the plugin/driver shall generate a value that acts equivalently to
the SCSI defined Logical Unit Group behavior. If the target does not support the SCSI
logical unit group identifier and the plugin knows the target has symmetric access through
all ports, then the plugin shall set this property to zero. If the target does not support the
SCSI page 83h Logical Unit Group identifier and the plugin does not have proprietary
knowledge of logical unit groups, then this shall be set to FFFFFFFFh.

autoFailbackEnabled
MP_TRUE if the administrator has requested that auto-failback be enabled for this
multipath logical unit. If the plugin's autoFailbackSupport is

Multipath Management API SNIA Technical Position 35
Version 1.0

MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU, MP_UNKNOWN is valid and
indicates that multipath logical unit has auto-failback enabled if
pluginAutoFailbackEnabled is true. Undefined if the plugin's autoFailbackSupport
property is MP_AUTOFAILBACK_SUPPORT_NONE or
MP_AUTOFAILBACK_SUPPORT_PLUGIN.

failbackPollingRateMax
The maximum polling rate (in seconds) supported by the driver. Zero (0) indicates the
driver either does not poll for auto-failback or has not provided an interface to set the
polling rate for multipath logical units. If this property and the plugin's
failbackPollingRateMax are non-zero, this value has precedence for the associate logical
unit. Undefined if the plugin's autoFailbackSupport property is
MP_AUTOFAILBACK_SUPPORT_NONE or MP_AUTOFAILBACK_SUPPORT_PLUGIN.

currentFailbackPollingRate
The current polling rate (in seconds) for auto-failback. This cannot exceed
failbackPollingRateMax. If this property and the plugin's currentFailbackPollingRate are
non-zero, this value has precedence for the associate logical unit. Undefined if the
plugin's autoFailbackSupport property is MP_AUTOFAILBACK_SUPPORT_NONE or
MP_AUTOFAILBACK_SUPPORT_PLUGIN.

autofProbingEnabled
MP_TRUE if the administrator has requested that auto-probing be enabled for this
multipath logical unit. If the plugin's autoProbingSupport is
MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU, MP_UNKNOWN is valid and
indicates that multipath logical unit has auto-Probing enabled if
pluginAutoProbingEnabled is true. Undefined if the plugin's autoProbingSupport property
is MP_AUTOPROBING_SUPPORT_NONE or
MP_AUTOPROBING_SUPPORT_PLUGIN.

probingPollingRateMax
The maximum polling rate (in seconds) supported by the driver. Zero (0) indicates the
driver either does not poll for auto-Probing or has not provided an interface to set the
polling rate for multipath logical units. If this property and the plugin's
probingPollingRateMax are non-zero, this value has precedence for the associate logical
unit. Undefined if the plugin's autoProbingSupport property is
MP_AUTOPROBING_SUPPORT_NONE or MP_AUTOPROBING_SUPPORT_PLUGIN.

currentProbingPollingRate
The current polling rate (in seconds) for auto-Probing. This cannot exceed
probingPollingRateMax. If this property and the plugin's currentProbingPollingRate are
non-zero, this value has precedence for the associate logical unit. Undefined if the
plugin's autoProbingSupport property is MP_AUTOPROBING_SUPPORT_NONE or
MP_AUTOPROBING_SUPPORT_PLUGIN.

proprietaryPropertyCount
The count of proprietary properties (less that or equal to eight) supported.

proprietaryProperties
A list of proprietary property name/value pairs.

Remarks
MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES represents an aggregation of paths
presented as a virtual device to applications (or drivers higher in the stack). Each
MP_PATH_LOGICAL_UNIT_PROPERTIES has a set of associated paths
(MP_PATH_LOGICAL_UNIT_PROPERTIES).

Multipath Management API SNIA Technical Position 36
Version 1.0

4.27 MP_PATH_LOGICAL_UNIT_PROPERTIES
Format

typedef struct _MP_PATH_LOGICAL_UNIT_PROPERTIES
{
 MP_UINT32 weight;
 MP_PATH_STATE pathState;
 MP_BOOL disabled;
 MP_OID initiatorPortOid;
 MP_OID targetPortOid;
 MP_OID logicalUnitOid;
 MP_UINT64 logicalUnitNumber;
 MP_CHAR deviceFileName[256];
 MP_UINT32 busNumber;
 MP_UINT32 portNumber;
} MP_PATH_LOGICAL_UNIT_PROPERTIES;

Fields
weight

The administrator-assigned weight of the path. By default (unless specified by the
administrator), all paths are assigned the maximum weight supported by the driver
(MP_PLUGIN_PROPERTIES.maximumWeight).

pathState
The path state.

disabled
A boolean indicating that the path is disabled explicitly by the MP_DisablePath API or
path weight configuration or implicitly due to path failures.

initiatorPortOid
The object ID of the initiator port associated with the path.

targetPortOid
The object ID of the target port associated with the path.

logicalUnitOid
The object ID of the multipath logical unit associated with the path logical unit.

logicalUnitNumber;
The SCSI Logical Unit Number as a SCSI Architecture Model (SAM) eight-byte value.
Note that in typical cases, the logical unit number

deviceFileName
The name of the OS device file representing this path, if one exists.

busNumber
On Windows, the bus number associated with the initiator port. Undefined for other
platforms.

portNumber
On Windows, the port number associated with the initiator port. Undefined for other
platforms.

Remarks
As used throughout this specification, the term “path” applies to a combination of a target
port, initiator port and logical unit. Unlike other object/structures defined by this specification,
a path does not represent a particular object from the real world, but represents an
association between real-world objects. Treating the path as a data-structure allows us to
assign it an object ID and treat it like other API objects.

Multipath Management API SNIA Technical Position 37
Version 1.0

4.28 MP_INITIATOR_PORT_PROPERTIES
Format

typedef struct _MP_INITIATOR_PORT_PROPERTIES
{
 MP_CHAR portID[256];
 MP_PORT_TRANSPORT_TYPE portType;
 MP_CHAR osDeviceFile[256];
 MP_WCHAR osFriendlyName[256];
} MP_INITIATOR_PORT_PROPERTIES

Fields
portID

The name of the port. This should be a worldwide unique name defined per transport-
specific standards; such as a FC port WWN.

portType
The transport type of the port.

osDeviceFile
The OS device file name representing the port on the system. See Appendix 0Initiator
Port osDeviceName.

osFriendlyName
An administrator-friendly name for an initiator port. A name that an administrator would
likely use to refer to the port, if known.

Remarks
In order to assure interoperability, portID must be formatted consistently across
implementations.

MP_PORT_TRANSPORT_TYPE_MPNODE A string representing a platform-specific
special device file as described in section 0
Initiator Port osDeviceName.

MP_PORT_TRANSPORT_TYPE_FC A PortWWN formatted as 16 un-separated
upper case hex digits (e.g.
'21000020372D3C73')

MP_PORT_TRANSPORT_TYPE_SPI A host/platform name for the port. This is not
an interoperable solution, but SPI ports
typically lack names.

MP_PORT_TRANSPORT_TYPE_ISCSI The port name is a string and MUST be an
iSCSI name in “iqn”, “eui”, or “naa” format as
described in the iSCSI standards.

MP_PORT_TRANSPORT_TYPE_IFB InfiniBand Global Identifier formatted as 32
un-separated upper case hex digits.

4.29 MP_TARGET_PORT_PROPERTIES
Format

typedef struct _MP_TARGET_PORT_PROPERTIES
{
 MP_CHAR portID[256];
 MP_UINT32 relativePortID
} MP_TARGET_PORT_PROPERTIES

Multipath Management API SNIA Technical Position 38
Version 1.0

Fields
portID

The name of the port. This should be a worldwide unique name defined per transport-
specific standards; such as a FC port WWN.

relativePortID
An integer identifier for the target port. This corresponds to the relative target port
Identifier field in an INQUIRY VPD page 85 response, type 4h identifier. Note that this
value is constrained to 16 bits in SPC3 and that 0 is reserved. If this interface is not
supported by the target device, this property shall be synthesized by the plugin – set this
to 1 for port A, 2 for port B, etc.

Remarks
See the remarks above for MP_INITIATOR_PORT_PROPERTIES.

4.30 MP_TARGET_PORT_GROUP_PROPERTIES
Format

typedef struct _MP_TARGET_PORT_GROUP_PROPERTIES
{
 MP_ACCESS_STATE_TYPE accessState;
 MP_BOOL explicitFailover;
 MP_BOOL supportsLuAssignment;
 MP_BOOL preferredLuPath;
 MP_UINT32 tpgID
} MP_TARGET_PORT_GROUP_PROPERTIES;

Fields
accessState

The access state as defined in SCSI Primacy Commands 3 Specification (SPC3)

explicitFailover
Set to true if the target device supports an explicit command to set target port group
access state (such as the SCSI Set Target Port Groups command)

supportsLuAssignment
A boolean indicating whether the device supports assigning logical units to target port
groups. This capability is not based on a standard, but some devices provide this to
allow an administrator to optimize throughput by selecting which ports that should be
used to access specific logical units.

preferredLuPath
A boolean to identify the preferred path to the associated logical units (PREF bit as
described in T10 04-122R1 or SPC3 revision 19 or newer) or a vendor-specific interface.

tpgId
An integer identifier for the target port group. This corresponds to the TARGET PORT
GROUP field in the REPORT TARGET PORT GROUPS response and the TARGET
PORT GROUP field in an INQUIRY VPD page 85 response, type 5h identifier. Note that
this value is constrained to 16 bits in T10 SPC3.

Remarks

4.31 MP_TPG_STATE_PAIR
Format

typedef struct _MP_TPG_STATE_PAIR

Multipath Management API SNIA Technical Position 39
Version 1.0

{
 MP_OID tpgOid;
 MP_ACCESS_STATE_TYPE desiredState;
} MP_TPG_STATE_PAIR;

Fields
tpgOid

The object ID of a target port group instance.

state
The desired state of the target port group.

Remarks
This structure is mandatory if the plugin supports the MP_SetTPGAccess method.

Multipath Management API SNIA Technical Position 40
Version 1.0

5 APIs
APIs to return properties of an object

Many of the APIs return properties of objects. These APIs have names like
MP_Get<object-type>Properties, for example, MP_GetTargetPortProperties.

APIs that associate object instances

Some APIs return object IDs of objects related to another object. For example,
MP_GetTargetPortOIDList returns a list of IDs of target port objects that comprise a Target Port
Group.

APIs that perform multipath tasks

Includes MP_AssignLogicalUnitToTPG, MP_CancelOverridePath, MP_DisableAutoFailback,
MP_DisableAutoProbing, MP_DisablePath, MP_EnableAutoFailback, MP_EnableAutoProbing,
MP_EnablePath, MP_SetLogicalUnitLoadBalanceType, MP_SetOverridePath,
MP_SetPathWeight, MP_SetPluginLoadBalanceType, MP_SetPollingRate, and
MP_SetTPGAccess.

Convenience Methods

These APIs are not related to multipathing, but provide common programming tasks for clients –
MP_CompareOids, MP_FreeOidList, MP_GetAssociatedPluginOid, MP_GetObjectType,

APIs related to installation

MP_DeregisterPlugin and MP_RegisterPlugin

APIs related to events

MP_DeregisterForObjectPropertyChanges, MP_DeregisterForVisibilityChanges,
MP_RegisterForObjectPropertyChanges, MP_RegisterForVisibilityChanges,

Multipath Management API SNIA Technical Position 41
Version 1.0

Typical Discovery Scenario

A typical client task starts by discovering a subset of the classes by making a sequence of API
calls. Once this subset is discovered, the client may display the results or issue another API call
to make a change requested by the user. The general discovery pattern in this API is to use an
association API to get a list of associated object IDs, then use a properties API on each object ID
to get the details.

The diagram below helps a developer understand which API calls are needed for discovery. The
dashed lines include the function name that a client will use to determine which other objects (the
arrow end of the line) are associated to a given object (the line-end without an arrow).

MP Plugin

Multipath
Logical Unit

Path
Logical Unit

Initiator Port

PortID

Target Port

PortID

Target Port Group

AccessState

MP Library

*

1 1
*

*

*

Device Product

VendorID
ProductID

1

*

ProprietaryLoad
BalanceTypes

GetAssociated
PathOIDList

GetA
ss

oc
iated

Path
OidL

ist

GetAssociated
PathOidList

GetAssociatedTPGOidList

G
etA

ssociated
TP

G
O

idList

GetMultipathLUs

G
et

Ta
rg

et
P

or
t

O
ID

Li
st

GetMPLuOidListFromTPG

G
etD

evice
P

r oduct O
idLi st

G
etP

lugi n
O

idL ist

GetPropritary

LoadBalance

OidList

GetInitiator

PortOidList
*

Figure 5 APIs Relative to the Objects From Figure 1

Discovery of a model subset typically starts at the library (upper left), finds associated plugins
(follow the dashed line) by calling GetPluginOidList, then uses GetPluginProperties to get plugin
details. After that, the client has choices which other classes to navigate – depending on the
particular task. If the task requires a list of initiator ports, follow the dashed line to initiator ports
(call GetInitiatorPortOidList) and get the details using GetInitiatorPortProperties. From initiator
ports, GetAssociatedPathOidList returns a list of paths. The same leapfrog approach can be
used to determine which API functions are useful in discovering various subsets of the model.

Multipath Management API SNIA Technical Position 42
Version 1.0

5.1 MP_AssignLogicalUnitToTPG
Synopsis

Assign a multipath logical unit to a target port group.

Prototype
MP_STATUS MP_AssignLogicalUnitToTPG(
 /* in */ MP_OID tpgOid;
 /* in */ MP_OID luOid;
);

Parameters
tpgOid

An MP_TARGET_PORT_GROUP oid. The target port group currently in active access
state that the administrator would like the LU assigned to.

luOid
An MP_MULTIPATH_LOGICAL_UNIT object ID.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when tpgOid or luOid does not specify any valid object type. This is
most likely to happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when tpgOid has a type subfield other than
MP_OBJECT_TYPE_TARGET_PORT_GROUP or luOid has a type subfield
other than MP_OBJECT_TYPE_MULTIPATH_LU.

MP_STATUS_OBJECT_NOT_FOUND
Returned when tpgOid or luOid owner ID or object sequence number is invalid.

MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

MP_STATUS_SUCCESS
Returned when the operation is successful.

Remarks
Only valid if the target port group supportsLuAssignment is true. This capability is not defined
in SCSI standards. In some cases, devices support this capability through non-SCSI
interfaces (such as SMI-S or SNMP). This method is only used when devices support this
capability through vendor-specific SCSI commands.

At any given time, each LU will typically be associated with two target port groups, one in
active state and one in standby state. The result of this API will be that the LU associations
change to a different pair of target port groups. The caller should specify the object ID of the
desired target port group in active access state.

Support
Optional.

See Also
MP_GetAssociatedTPGOidList

MP_GetMPLuOidListFromTPG

Multipath Management API SNIA Technical Position 43
Version 1.0

MP_TARGET_PORT_GROUP_PROPERTIES.supportsLuAssignment

Multipath Management API SNIA Technical Position 44
Version 1.0

5.2 MP_CancelOverridePath
Synopsis

Cancel a path override and re-enable load balancing.

Prototype
MP_STATUS MP_CancelOverridePath(
 /* in */ MP_OID logicalUnitOid;
);

Parameters
logicalUnitOid

An MP_MULTIPATH_LOGICAL_UNIT object ID.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when logicalUnitOid does not specify any valid object type. This is
most likely to happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when logicalUnitOid has a type subfield other than
MP_MULTIPATH_LOGICAL_UNIT.

MP_STATUS_OBJECT_NOT_FOUND
Returned when logicalUnitOid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

Remarks
Only valid if canOverridePaths is true in plugin properties.

The previous load balance configuration and preferences in effect before the path was
overridden are restored.

Support
Optional.

See Also
 MP_SetOverridePath

Multipath Management API SNIA Technical Position 45
Version 1.0

5.3 MP_CompareOIDs
Synopsis

Compare two Oids for equality to see whether they refer to the same object.

Prototype
MP_STATUS MP_CompareOIDs (
 /* in */ MP_OID oid1;
 /* in */ MP_OID oid2;
);

Parameters
oid1, oid2

Oids for two objects to compare.

Typical Return Values
MP_STATUS_FAILED

Returned when the Oids don't compare.

MP_STATUS_SUCCESS
Returned when the two Oids do refer to the same object.

Remarks
The fields in the two object IDs are compared field-by-field for equality.

Support
Mandatory

See Also

Multipath Management API SNIA Technical Position 46
Version 1.0

5.4 MP_DeregisterForObjectPropertyChanges
Synopsis

Deregisters a previously registered client function that is to be invoked whenever an object’s
property changes.

Prototype
MP_STATUS MP_DeregisterForObjectPropertyChanges (
 /* in */ MP_OBJECT_PROPERTY_FN pClientFn,
 /* in */ MP_OBJECT_TYPE objectType,
 /* in */ MP_OID pluginOid
);

Parameters
pClientFn

A pointer to an MP_OBJECT_PROPERTY_FN function defined by the client that was
previously registered using the MP_RegisterForObjectPropertyChanges API. On
successful return this function will no longer be called to inform the client of object
property changes.

objectType
The type of object the client wishes to deregister for property change callbacks. If null,
then all objects types are deregistered.

pluginOid
If this is a valid plugin object ID, then registration will be removed from that plugin. If this
is zero, then registration is removed for all plugins.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when pluginOid does not specify any valid object type. This is most
likely to happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when pluginOid is not zero and has a type subfield other than
MP_OBJECT_TYPE_PLUGIN.

MP_STATUS_OBJECT_NOT_FOUND
Returned when pluginOid owner ID or object sequence number is invalid.

MP_STATUS_UNKNOWN_FN
Returned when pClientFn is not the same as the previously registered function.

MP_STATUS_SUCCESS
Returned when pClientFn is deregistered successfully.

MP_STATUS_FAILED
Returned when pClientFn deregistration is not possible at this time

Support
Mandatory

Remarks
The function specified by pClientFn takes a single parameter of type
MP_OBJECT_PROPERTY_FN.

The function specified by pClientFn will no longer be called whenever an object’s property
changes.

Multipath Management API SNIA Technical Position 47
Version 1.0

See Also
MP_RegisterForObjectPropertyChanges

Multipath Management API SNIA Technical Position 48
Version 1.0

5.5 MP_DeregisterForObjectVisibilityChanges
Synopsis

Deregisters a client function to be called whenever a high level object appears or disappears.

Prototype
MP_STATUS MP_DeregisterForObjectCreationChanges (
 /* in */ MP_OBJECT_VISIBILITY_FN pClientFn,
 /* in */ MP_OBJECT_TYPE objectType,
 /* in */ MP_OID pluginOid
);

Parameters
pClientFn

A pointer to an MP_OBJECT_VISIBILITY_FN function defined by the client that was
previously registered using the MP_RegisterForObjectVisibilityChanges API. On
successful return this function will no longer be called to inform the client of object
visibility changes.

objectType
The type of object the client wishes to deregister for visibility change callbacks. If null,
then all objects types are deregistered.

pluginOid
If this is a valid plugin object ID, then registration will be removed from that plugin. If this
is zero, then registration is removed for all plugins.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when pluginOid does not specify any valid object type. This is most
likely to happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when pluginOid is not zero or has a type subfield other than
MP_OBJECT_TYPE_PLUGIN.

MP_STATUS_OBJECT_NOT_FOUND
Returned when pluginOid owner ID or object sequence number is invalid.

MP_STATUS_UNKNOWN_FN
Returned when pClientFn is not the same as a previously registered function.

MP_STATUS_SUCCESS
Returned when pClientFn is deregistered successfully.

MP_STATUS_FAILED
Returned when pClientFn deregistration is not possible at this time

Support
Mandatory

Remarks
The function specified by pClientFn takes a single parameter of type
MP_OBJECT_VISIBILITY_FN.

The function specified by pClientFn will be no longer be called whenever high level objects
appear or disappear.

Multipath Management API SNIA Technical Position 49
Version 1.0

See Also
MP_RegisterForObjectVisibilityChanges

Multipath Management API SNIA Technical Position 50
Version 1.0

5.6 MP_DeregisterPlugin
Synopsis

Deregisters a plugin from the common library.

Prototype
MP_STATUS MP_DeregisterPlugin (
 /* in */ MP_WCHAR *pPluginId
);

Parameters
pPluginId

A pointer to a Plugin ID previously registered using the MP_RegisterPlugin API.

Typical Return Values
MP_STATUS_INVALID_PARAMETER

Returned when pPluginId is null or specifies a memory area that is not
executable.

MP_STATUS_UNKNOWN_FN
Returned when pPluginId is not the same as a previously registered function.

MP_STATUS_SUCCESS
Returned when pPluginId is deregistered successfully.

MP_STATUS_FAILED
Returned when pPluginId deregistration is not possible at this time

Support
Mandatory

Remarks
The plugin will no longer be invoked by the common library. This API does not dynamically
remove the plugin from a running library instance. Instead, it prevents an application that is
currently not using a plugin from accessing the plugin. This is generally the behavior
expected from dynamically loaded modules.

This API will typically be used during plugin deinstallation or upgrade.

Unlike some other APIs, this API is implemented entirely in the common library.

See Also
MP_RegisterPlugin

Multipath Management API SNIA Technical Position 51
Version 1.0

5.7 MP_DisableAutoFailback
Synopsis

Disables auto-failback for the specified plugin or multipath logical unit.

Prototype
MP_STATUS MP_DisableAutoFailback(
 /* in */ MP_OID oid
);

Parameters
oid

The object ID of the plugin or the multipath logical unit.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN
or MP_OBJECT_TYPE_MULTIPATH_LU.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful

MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

Support
Mandatory if MP_PLUGIN_PROPERTIES.autoFailbackSupported is not
MP_AUTOFAILBACK_SUPPORT_NONE.

Remarks

See Also
MP_EnableAutoFailback

Multipath Management API SNIA Technical Position 52
Version 1.0

5.8 MP_DisableAutoProbing
Synopsis

Disables auto-Probing for the specified plugin or multipath logical unit.

Prototype
MP_STATUS MP_DisableAutoProbing(
 /* in */ MP_OID oid
);

Parameters
oid

The object ID of the plugin or the multipath logical unit.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN
or MP_OBJECT_TYPE_MULTIPATH_LU.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful

MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

Support
Mandatory if MP_PLUGIN_PROPERTIES.autoProbingSupported is not
MP_AUTOPROBING_SUPPORT_NONE.

Remarks

See Also
MP_EnableAutoProbing

Multipath Management API SNIA Technical Position 53
Version 1.0

5.9 MP_DisablePath
Synopsis

Disables a path. This API may cause failover in a logical unit with asymmetric access.

Prototype
MP_STATUS MP_DisablePath(
 /* in */ MP_OID oid
);

Parameters
oid

The object ID of the path (MP_PATH_LOGICAL_UNIT_PROPERTIES).

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_INVALID_PARAMETER
Returned when oid does not have a type subfield of
MP_OBJECT_TYPE_PATH_LU.

MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

MP_STATUS_TRY_AGAIN
Returned when the path cannot be disabled at this time.

MP_STATUS_NOT_PERMITTED
Returned when disabling this path would cause the logical unit to become
unavailable. Whether the implementation returns this value or allows the last
path to be disabled is implementation specific.

MP_STATUS_SUCCESS
Returned when the operation is successful

Support
Optional

Remarks
This API sets MP_PATH_LOGICAL_UNIT_PROPERTIES.disabled to true.

See Also
MP_EnablePath

Multipath Management API SNIA Technical Position 54
Version 1.0

5.10 MP_EnableAutoFailback
Synopsis

Enables Auto-failback.

Prototype
MP_STATUS MP_EnableAutoFailback(
 /* in */ MP_OID oid
);

Parameters
oid

The object ID of the plugin or multipath logical unit.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN
or MP_OBJECT_TYPE_MULTIPATH_LU.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful

MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

Support
Mandatory if MP_PLUGIN_PROPERTIES.autoFailbackSupported is not
MP_AUTOFAILBACK_SUPPORT_NONE.

Remarks

See Also
MP_DisableAutoFailback

Multipath Management API SNIA Technical Position 55
Version 1.0

5.11 MP_EnableAutoProbing
Synopsis

Enables Auto-Probing.

Prototype
MP_STATUS MP_EnableAutoProbing(
 /* in */ MP_OID oid
);

Parameters
oid

The object ID of the plugin or multipath logical unit.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN
or MP_OBJECT_TYPE_MULTIPATH_LU.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful

MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

Support
Mandatory if MP_PLUGIN_PROPERTIES.autoProbingSupported is not
MP_AUTOPROBING_SUPPORT_NONE.

Remarks

See Also
MP_DisableAutoProbing

Multipath Management API SNIA Technical Position 56
Version 1.0

5.12 MP_EnablePath
Synopsis

Enables a path. This API may cause failover in a logical unit with asymmetric access.

Prototype
MP_STATUS MP_EnablePath(
 /* in */ MP_OID oid
);

Parameters
oid

The object ID of the path

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when oid has a type subfield other than
MP_OBJECT_TYPE_PATH_LU.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

MP_STATUS_TRY_AGAIN
Returned when the path cannot be enabled at this time.

MP_STATUS_SUCCESS
Returned when the operation is successful

Support
Optional

Remarks
This API sets MP_PATH_LOGICAL_UNIT_PROPERTIES.disabled to false.

See Also
MP_DisablePath

Multipath Management API SNIA Technical Position 57
Version 1.0

5.13 MP_FreeOidList
Synopsis

Frees memory returned by an MP API.

Prototype
MP_STATUS MP_FreeOidList(
 /* in */ MP_OID_LIST *pOidList
);

Parameters
pOidList

A pointer to an object ID list returned by an MP API. On successful return, the allocated
memory is freed.

Typical Return Values
MP_STATUS_INVALID_PARAMETER

Returned when pOidList is null or specifies a memory area to which data cannot
be written.

MP_STATUS_SUCCESS
Returned when the operation is successful.

Remarks
Client shall free all MP_OID_LIST structures returned by any API by using this function.

Support
Mandatory

See Also

Multipath Management API SNIA Technical Position 58
Version 1.0

5.14 MP_GetAssociatedPathOidList
Synopsis

Get a list of oids for all the path logical units associated with the specified multipath logical
unit, initiator port, or target port.

Prototype
MP_STATUS MP_GetAssociatedPathOidList (
 /* in */ MP_OID oid,
 /* out */ MP_OID_LIST **ppList
);

Parameters
oid

The object ID of the multipath logical unit, initiator port, or target port

ppList
A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of all the paths
associated with the specified (multipath) logical unit, initiator port, or target port oid.

Typical Return Values
MP_STATUS_INVALID_PARAMETER

Returned when ppList is null or specifies a memory area to which data cannot be
written or when oid has a type subfield other than
MP_OBJECT_TYPE_MULTIPATH_LU, MP_OBJECT_TYPE_INITIATOR_PORT
or MP_OBJECT_TYPE_TARGET_PORT.

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful

Remarks
When the caller is finished using the list it must free the memory used by the list by calling
MP_FreeOidList.

Support
Mandatory

See Also
MP_GetPathLogicalUnitProperties

Multipath Management API SNIA Technical Position 59
Version 1.0

5.15 MP_GetAssociatedPluginOid
Synopsis

Gets the object ID for the plugin associated with the specified object ID.

Prototype
MP_STATUS MP_GetAssociatedPluginOid(
 /* in */ MP_OID oid
 /* out */ MP_OID *pPluginOid
);

Parameters
oid

The object ID of an object that has been received from a previous API call.

 pPluginOid
A pointer to an MP_OID structure allocated by the caller. On successful return this will
contain the object ID of the plugin associated with the object specified by oid.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when pluginOid is null or specifies a memory area to which data cannot
be written.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID is invalid.

Remarks
The sequence number subfield of oid is not validated since this API is implemented in the
common library.

Support
Mandatory

See Also

Multipath Management API SNIA Technical Position 60
Version 1.0

5.16 MP_GetAssociatedTPGOidList
Synopsis

Get a list of the object IDs containing the target port group associated with the specified
multipath logical unit.

Prototype
MP_STATUS MP_GetAssociatedTPGOidList(
 /* in */ MP_OID oid,
 /* out */ MP_OID_LIST **ppList
);

Parameters
oid

The object ID of the multipath logical unit.

ppList
A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of target port groups
associated with the specified logical unit.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when ppList is null or specifies a memory area to which data cannot be
written or oid has a type subfield other than
MP_OBJECT_TYPE_MULTIPATH_LU.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_FAILED
Returned when the target port group list for the specified object ID is not found

MP_STATUS_INSUFFICIENT_MEMORY
Returned when memory allocation failure occurs

Remarks
When the caller is finished using the list it must free the memory used by the list by calling
MP_FreeOidList.

Support
Mandatory

See Also
MP_GetTargetPortGroupProperties

Multipath Management API SNIA Technical Position 61
Version 1.0

5.17 MP_GetDeviceProductOidList
Synopsis

Gets a list of the object IDs of all the device product properties associated with this plugin.

Prototype
MP_STATUS MP_GetDeviceProductOidList(
 /* in */ MP_OID oid,
 /* out */ MP_OID_LIST **ppList
);

Parameters
oid

The object ID of the plugin.

ppList
A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of all the device
product descriptors associated with the specified plugin.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when ppList is null or specifies a memory area to which data cannot be
written oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_FAILED
Returned when the plugin for the specified object ID is not found

MP_STATUS_INSUFFICIENT_MEMORY
Returned when memory allocation failure occurs

MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

Remarks
When the caller is finished using the list it must free the memory used by the list by calling
MP_FreeOidList.

Support
Required if the driver supports product-specific load balance types.

See Also
MP_GetDeviceProductProperties

Multipath Management API SNIA Technical Position 62
Version 1.0

5.18 MP_GetDeviceProductProperties
Synopsis

Get the properties of the specified device product.

Prototype
MP_STATUS MP_GetDeviceProductProperties(
 /* in */ MP_OID oid,
 /* out */ MP_DEVICE_PRODUCT_PROPERTIES *pProps
);

Parameters
oid

The object ID of the device product.

pProps
A pointer to an MP_DEVICE_PRODUCT_PROPERTIES structure allocated by the caller.
On successful return this structure will contain the properties of the device product
specified by oid.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_INVALID_PARAMETER
Returned when pProps is null or specifies a memory area to which data cannot
be written or oid has a type subfield other than
MP_OBJECT_TYPE_DEVICE_PRODUCT.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_FAILED
Returned when the plugin for the specified oid is not found

MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API

Remarks

Support
Required if the driver supports product-specific load balance types.

See Also
MP_ GetDeviceProductOidList

Multipath Management API SNIA Technical Position 63
Version 1.0

5.19 MP_GetInitiatorPortOidList
Synopsis

Gets a list of the object IDs of all the initiator ports associated with this plugin.

Prototype
MP_STATUS MP_GetInitiatorPortOidList(
 /* in */ MP_OID oid,
 /* out */ MP_OID_LIST **ppList
);

Parameters
oid

The object ID of the plugin.

ppList
A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of all the initiator ports
associated with the specified plugin.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when pplist is null or specifies a memory area to which data cannot be
written or when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

 MP_STATUS_INSUFFICIENT_MEMORY
Returned when memory allocation failure occurs

Remarks
When the caller is finished using the list it must free the memory used by the list by calling
MP_FreeOidList.

Support
Mandatory

See Also
MP_GetInitiatorPortProperties

Multipath Management API SNIA Technical Position 64
Version 1.0

5.20 MP_GetInitiatorPortProperties
Synopsis

Gets the properties of the specified initiator port.

Prototype
MP_STATUS MP_GetInitiatorPortProperties(
 /* in */ MP_OID oid,
 /* out */ MP_INITIATOR_PORT_PROPERTIES *pProps
);

Parameters
oid

The object ID of the Port.

pProps
A pointer to an MP_INITIATOR_PORT_PROPERTIES structure allocated by the caller.
On successful return, this structure will contain the properties of the port specified by oid.

Typical Return Values
MP_STATUS_INVALID_PARAMETER

Returned when pProps is null or specifies a memory area to which data cannot
be written or when oid has a type subfield other than
MP_OBJECT_TYPE_INITIATOR_PORT.

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful

Remarks
None

Support
Mandatory

See Also
MP_GetInitiatorPortOidList

Multipath Management API SNIA Technical Position 65
Version 1.0

5.21 MP_GetLibraryProperties
Synopsis

Gets the properties of the MP library that is being used.

Prototype
MP_STATUS MP_GetLibraryProperties(
 /* out */ MP_LIBRARY_PROPERTIES *pProps
);

Parameters
pProps

A pointer to an MP_LIBRARY_PROPERTIES structure allocated by the caller. On
successful return this structure will contain the properties of the MP library that is being
used.

Typical Return Values
MP_STATUS_INVALID_PARAMETER

Returned when pProps is null or specifies a memory area which cannot be
written.

MP_STATUS_SUCCESS
Returned when the operation is successful.

Remarks
None

Support
Mandatory

See Also
Example of Getting Library Properties

Multipath Management API SNIA Technical Position 66
Version 1.0

5.22 MP_GetMPLuOidListFromTPG
Synopsis

Returns the list of oids for multipath logical units associated with the specific target port
group.

Prototype
MP_STATUS MP_GetMPLuOidListFromTPG(
 /* in */ MP_OID oid,
 /* out */ MP_OID **ppList
);

Parameters
oid

The object ID of the target port group.

ppList
A pointer to a pointer to an MP_OID_LIST structure. On successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of all the (multipath)
logical units associated with the specified target port group.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when pplist is null or specifies a memory area to which data cannot be
written or when oid has a type subfield other than
MP_OBJECT_TYPE_TARGET_PORT.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_FAILED
Returned when the multipath logical unit list for the specified target port group
object ID is not found

MP_STATUS_INSUFFICIENT_MEMORY
Returned when memory allocation failure occurs

Remarks
When the caller is finished using the list it must free the memory used by the list by calling
MP_FreeOidList.

Support
Mandatory

See Also
MP_GetMPLogicalUnitProperties

Multipath Management API SNIA Technical Position 67
Version 1.0

5.23 MP_GetMPLogicalUnitProperties
Synopsis

Get the properties of the specified logical unit.

Prototype
MP_STATUS MP_GetMPLogicalUnitProperties(
 /* in */ MP_OID oid,
 /* out */ MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES *pProps
);

Parameters
oid

The object ID of the multipath logical unit.

pProps
A pointer to an MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES structure allocated by
the caller. On successful return, this structure will contain the properties of the multipath
logical unit specified by oid.

Typical Return Values
MP_STATUS_INVALID_PARAMETER

Returned when pProps is null or specifies a memory area to which data cannot
be written or when oid has a type subfield other than
MP_OBJECT_TYPE_MULTIPATH_LU.

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful

Remarks
None

Support
Mandatory

See Also
MP_ GetMPLuOidListFromTPG

MP_GetMultipathLus

Multipath Management API SNIA Technical Position 68
Version 1.0

5.24 MP_GetMultipathLus
Synopsis

Returns a list of multipath logical units associated to a plugin.

Prototype
MP_STATUS MP_GetMultipathLus(
 /* in */ MP_OID oid,
 /* out */ MP_OID_LIST **ppList
);

Parameters
oid

The object ID of the plugin or device product object.

ppList
A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of all the (multipath)
logical units associated with the specified plugin object ID.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when ppList is null or specifies a memory area that cannot be written or
when oid has a type subfield other than
MP_OBJECT_TYPE_DEVICE_PRODUCT or MP_OBJECT_TYPE_PLUGIN.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_FAILED
Returned when the plugin for the specified object ID is not found

MP_STATUS_INSUFFICIENT_MEMORY
Returned when memory allocation failure occurs

Remarks
 When the caller is finished using the list it must free the memory used by the list by calling
MP_FreeOidList.

Support
Mandatory

See Also
MP_GetLogicalUnitProperties

Multipath Management API SNIA Technical Position 69
Version 1.0

5.25 MP_GetObjectType
Synopsis

Gets the object type of an initialized object ID.

Prototype
MP_STATUS MP_GetObjectType(
 /* in */ MP_OID oid,
 /* out */ MP_OBJECT_TYPE *pObjectType
);

Parameters
oid

The initialized object ID to get the type of.

pObjectType
A pointer to an MP_OBJECT_TYPE variable allocated by the caller. On successful
return it will contain the object type of oid.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when pObjectType is null or specifies a memory area to which data
cannot be written.

MP_STATUS_SUCCESS
Returned when the operation is successful.

Remarks
This API is provided so that clients can determine the type of object an object ID represents.
This can be very useful for a client function that receives notifications.

Support
Mandatory

See Also
MP_RegisterForObjectVisibilityChanges

Multipath Management API SNIA Technical Position 70
Version 1.0

5.26 MP_GetPathLogicalUnitProperties
Synopsis

Get the properties of the specified path.

Prototype
MP_STATUS MP_GetPathLogicalUnitProperties(
 /* in */ MP_OID oid,
 /* out */ MP_PATH_LOGICAL_UNIT_PROPERTIES *pProps
);

Parameters
oid

The object ID of the path logical unit

pProps
A pointer to an MP_PATH_LOGICAL_UNIT_PROPERTIES structure allocated by the
caller. On successful return, this structure will contain the properties of the path specified
by oid.

Typical Return Values
MP_STATUS_INVALID_PARAMETER

Returned when pProps is null or specifies a memory area to which data cannot
be written or when oid has a type subfield other than
MP_OBJECT_TYPE_PATH_LU.

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful

Remarks
None

Support
Mandatory

See Also
MP_GetAssociatedPathOidList

Multipath Management API SNIA Technical Position 71
Version 1.0

5.27 MP_GetPluginOidList
Synopsis

Gets a list of the object IDs of all currently loaded plugins.

Prototype
MP_STATUS MP_GetPluginOidList(
 /* out */ MP_OID_LIST **ppList
);

Parameters
ppList

A pointer to a pointer to an MP_OID_LIST. On successful return this will contain a
pointer to an MP_OID_LIST that contains the object IDs of all of the plugins currently
loaded by the library.

Typical Return Values
MP_STATUS_INVALID_PARAMETER

Returned when ppList is null or specifies a memory area to which data cannot be
written.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_FAILED
Returned when the plugin for the specified object ID is not found

MP_STATUS_INSUFFICIENT_MEMORY
Returned when memory allocation failure occurs

Remarks
The returned list is guaranteed to not contain any duplicate entries.

When the caller is finished using the list it must free the memory used by the list by calling
MP_FreeOidList.

Support
Mandatory

See Also
MP_FreeOidList

MP_GetPluginProperties

Example of Getting Plugin Properties

Multipath Management API SNIA Technical Position 72
Version 1.0

5.28 MP_GetPluginProperties
Synopsis

Gets the properties of the specified Plugin.

Prototype
MP_STATUS MP_GetPluginProperties(
 /* in */ MP_OID oid,
 /* out */ MP_PLUGIN_PROPERTIES *pProps
);

Parameters
oid

The object ID of the plugin.

pProps
A pointer to an MP_PLUGIN_PROPERTIES structure allocated by the caller. On
successful return, this structure will contain the properties of the plugin specified by oid.

Typical Return Values
MP_STATUS_INVALID_PARAMETER

Returned when pProps is null or specifies a memory area to which data cannot
be written or when oid has a type subfield other than
MP_OBJECT_TYPE_PLUGIN.

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid

MP_STATUS_SUCCESS
Returned when the operation is successful

Remarks
None

Support
Mandatory

See Also
MP_GetProprietaryLoadBalanceProperties

MP_ GetPluginOidList

Multipath Management API SNIA Technical Position 73
Version 1.0

5.29 MP_GetProprietaryLoadBalanceOidList
Synopsis

Gets a list of the object IDs of all the proprietary load balance algorithms associated with this
plugin.

Prototype
MP_STATUS MP_GetProprietaryLoadBalanceOidList(
 /* in */ MP_OID oid,
 /* out */ MP_OID_LIST **ppList
);

Parameters
oid

The object ID of the plugin.

ppList
A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of all the proprietary
load balance types associated with the specified plugin.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when ppList in null or specifies a memory area to which data cannot
be written or if oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_FAILED
Returned when the plugin for the specified object ID is not found

MP_STATUS_INSUFFICIENT_MEMORY
Returned when memory allocation failure occurs

MP_STATUS_UNSUPPORTED
 Returned when the implementation does not support the API

Remarks
When the caller is finished using the list it must free the memory used by the list by calling
MP_FreeOidList.

Support
Optional

See Also
MP_GetProprietaryLoadBalanceProperties

Multipath Management API SNIA Technical Position 74
Version 1.0

5.30 MP_GetProprietaryLoadBalanceProperties
Synopsis

Get the properties of the specified load balance properties structure.

Prototype
MP_STATUS MP_GetProprietaryLoadBalanceProperties (
 /* in */ MP_OID oid,
 /* out */ MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES*pProps
);

Parameters
oid

The object ID of the proprietary load balance structure.

pProps
A pointer to an MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES structure
allocated by the caller. On successful return, this structure will contain the properties of
the proprietary load balance algorithm specified by oid.

Typical Return Values
MP_STATUS_INVALID_PARAMETER

Returned when pObjectType is null or specifies a memory area to which data
cannot be written or when oid has a type subfield other than
MP_OBJECT_TYPE_PROPRIETARY_LOAD_BALANCE.

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful

Remarks
None

Support
Optional

See Also
MP_GetProprietaryLoadBalanceOidList

Multipath Management API SNIA Technical Position 75
Version 1.0

5.31 MP_GetTargetPortGroupProperties
Synopsis

Get the properties of the specified target port group.

Prototype
MP_STATUS MP_GetTargetPortGroupProperties(
 /* in */ MP_OID oid,
 /* out */ MP_TARGET_PORT_GROUP_PROPERTIES *pProps
);

Parameters
oid

The object ID of the target port group.

pProps
A pointer to an MP_TARGET_PORT_GROUP_PROPERTIES structure allocated by the
caller. On successful return, this structure will contain the properties of the target port
group specified by oid.

Typical Return Values
MP_STATUS_INVALID_PARAMETER

Returned when pProps is null or specifies a memory area to which data cannot
be written or when oid has a type subfield other than
MP_OBJECT_TYPE_TARGET_PORT_GROUP.

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful

Remarks
None

Support
Mandatory

See Also
MP_GetAssociatedTPGOidList

Multipath Management API SNIA Technical Position 76
Version 1.0

5.32 MP_GetTargetPortOidList
Synopsis

Get a list of the object IDs of the target ports in the specified target port group.

Prototype
MP_STATUS MP_GetTargetPortOidList(
 /* in */ MP_OID oid,
 /* out */ MP_OID_LIST **ppList
);

Parameters
oid

The object ID of the target port group.

ppList
A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of all the target ports
associated with the specified target port group oid.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when ppList is null or specifies a memory area to which data cannot
be writtem or when oid has a type subfield other than
MP_OBJECT_TYPE_TARGET_PORT.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_FAILED
Returned when the target port group for the specified object ID is not found

 MP_STATUS_INSUFFICIENT_MEMORY
Returned when memory allocation failure occurs

Remarks
When the caller is finished using the list it must free the memory used by the list by calling
MP_FreeOidList.

Support
Mandatory

See Also
MP_ GetTargetPortProperties

Multipath Management API SNIA Technical Position 77
Version 1.0

5.33 MP_GetTargetPortProperties
Synopsis

Gets the properties of the specified target port.

Prototype
MP_STATUS MP_GetTargetPortProperties(
 /* in */ MP_OID oid,
 /* out */ MP_TARGET_PORT_PROPERTIES *pProps
);

Parameters
oid

The object ID of the Port.

pProps
A pointer to an MP_TARGET_PORT_PROPERTIES structure allocated by the caller. On
successful return, this structure will contain the properties of the port specified by oid.

Typical Return Values
MP_STATUS_INVALID_PARAMETER

Returned when pProps is null or specifies a memory area to which data cannot
be written or when oid has a type subfield other than
MP_OBJECT_TYPE_TARGET_PORT.

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

Remarks
None

Support
Mandatory

See Also
MP_GetTargetPortOidList

Multipath Management API SNIA Technical Position 78
Version 1.0

5.34 MP_RegisterForObjectPropertyChanges
Synopsis

Registers a client function to be called whenever the property of an object changes.

Prototype
MP_STATUS MP_RegisterForObjectPropertyChanges (
 /* in */ MP_OBJECT_PROPERTY_FN pClientFn,
 /* in */ MP_OBJECT_TYPE objectType,
 /* in */ void *pCallerData,
 /* in */ MP_OID pluginOid
);

Parameters
pClientFn

A pointer to an MP_OBJECT_PROPERTY_FN function defined by the client. On
successful return this function will be called to inform the client of objects that have had
one or more properties change.

objectType
The type of object the client wishes to register for property change callbacks. If
MP_OBJECT_TYPE_UNKNOWN, then all objects types are registered.

pCallerData
A pointer that is passed to the callback routine with each event. This may be used by the
caller to correlate the event to source of the registration.

pluginOid
If this is a valid plugin object ID, then registration will be limited to that plugin. If this is
zero, then the registration is for all plugins.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when pluginOid or objectType does not specify any valid object type.
This is most likely to happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when pluginOid owner ID or object sequence number is invalid.

MP_STATUS_INVALID_PARAMETER
Returned when pCallerData is null or if pluginOid has a type subfield other than
MP_OBJECT_TYPE_PLUGIN or when objectType is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_FN_REPLACED
Returned when an existing client function is replaced with the one specified in
pClientFn.

Support
Mandatory

Remarks
The function specified by pClientFn takes a single parameter of type
MP_OBJECT_PROPERTY_FN.

Multipath Management API SNIA Technical Position 79
Version 1.0

The function specified by pClientFn will be called whenever the property of an object
changes. For the purposes of this function a property is defined to be a field in an object’s
property structure and the object’s status. Therefore, the client function will not be called if a
statistic of the associated object changes. But, it will be called when the status changes (e.g.
from working to failed) or when a name or other field in a property structure changes.

It is not an error to re-register a client function. However, a client function has only one
registration. The first call to deregister a client function will deregister it no matter how many
calls to register the function have been made.

If multiple properties of an object change simultaneously a client function may be called only
once to be notified that the changes have occurred.

See Also
MP_DeregisterForObjectPropertyChanges

Multipath Management API SNIA Technical Position 80
Version 1.0

5.35 MP_RegisterForObjectVisibilityChanges
Synopsis

Registers a client function to be called whenever a high level object appears or disappears.

Prototype
MP_STATUS MP_RegisterForObjectVisibilityChanges (
 /* in */ MP_OBJECT_VISIBILITY_FN pClientFn,
 /* in */ MP_OBJECT_TYPE objectType,
 /* in */ void *pCallerData,
 /* in */ MP_OID pluginOid
);

Parameters
pClientFn

A pointer to an MP_OBJECT_VISIBILITY_FN function defined by the client. On
successful return this function will be called to inform the client of objects whose visibility
has changed.

objectType
The type of object the client wishes to register for visibility change callbacks. If
MP_OBJECT_TYPE_UNKNOWN, then all objects types are registered.

pCallerData
A pointer that is passed to the callback routine with each event. This may be used by the
caller to correlate the event to source of the registration.

pluginOid
If this is a valid plugin object ID, then registration will be limited to that plugin. If this is
zero, then the registration is for all plugins.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when pluginOid or objectType does not specify any valid object type.
This is most likely to happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
 Returned when pluginOid owner ID or object sequence number is invalid.

MP_STATUS_INVALID_PARAMETER
Returned when pCallerData is null or pluginOid has a type subfield other than
MP_OBJECT_TYPE_PLUGIN or when objectType is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_FN_REPLACED
Returned when an existing client function is replaced with the one specified in
pClientFn.

Support
Mandatory

Remarks
The function specified by pClientFn takes a single parameter of type
MP_OBJECT_VISIBILITY_FN.

The function specified by pClientFn will be called whenever objects appear or disappear.

Multipath Management API SNIA Technical Position 81
Version 1.0

It is not an error to re-register a client function. However, a client function has only one
registration. The first call to deregister a client function will deregister it no matter how many
calls to register the function have been made.

See Also
MP_DeregisterForObjectVisibilityChanges

Multipath Management API SNIA Technical Position 82
Version 1.0

5.36 MP_RegisterPlugin
Synopsis

Registers a plugin with the common library. In a POSIX environment, this may be
implemented by adding an entry to a conf file. In Windows, it may be accomplished with a
registry entry.

Prototype
MP_STATUS MP_RegisterPlugin (
 /* in */ MP_WCHAR *pPluginId,
 /* in */ MP_CHAR *pFileName
);

Parameters
pPluginId

A pointer to the key name shall be the reversed domain name of the vendor followed by
“.” followed by the vendor specific name for the plugin that uniquely identifies the plugin.

pFileName
The full path to the plugin library.

Typical Return Values
MP_STATUS_INVALID_PARAMETER

Returned when pFileName does not exist.

MP_STATUS_SUCCESS
Returned when the operation is successful.

Support
Mandatory

Remarks
Unlike some other APIs, this API is implemented entirely in the common library. It must be
called before a plugin will be invoked by the common library.

This API does not impact dynamically add or change plugins bound to a running library
instance. Instead, it causes an application that is currently not using a plugin to access the
specified plugin on future calls to the common library. This is generally the behavior
expected from dynamically loaded modules.

This API is typically called by a plugin's installation software to inform the common library the
path for the plugin library.

It is not an error to re-register a plugin. However, a plugin has only one registration. The first
call to deregister a plugin will deregister it no matter how many calls to register the plugin
have been made.

A vendor may register multiple plugins by using separate plugin IDs and filenames.

See Also
MP_DeregisterPlugin

Multipath Management API SNIA Technical Position 83
Version 1.0

5.37 MP_SetLogicalUnitLoadBalanceType
Synopsis

Set the multipath logical unit’s load balancing policy.

Prototype
MP_STATUS MP_SetLogicalUnitLoadBalanceType(
 /* in */ MP_OID logicalUnitoid,
 /* in */ MP_LOAD_BALANCE_TYPE loadBalance
);

Parameters
logicalUnitOid

The object ID of the multipath logical unit.

loadBalance
The desired load balance policy for the specified logical unit.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when logicalUnitOid does not specify any valid object type. This is
most likely to happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when loadBalance is invalid or logicalUnitOid has a type subfield other
than MP_OBJECT_TYPE_MULTIPATH_LU.

MP_STATUS_OBJECT_NOT_FOUND
Returned when logicalUnitOid owner ID or object sequence number is invalid

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_FAILED
Returned when the specified loadBalance type cannot be handled by the plugin.
One possible reason is a request to set
MP_LOAD_BALANCE_TYPE_PRODUCT when the specified logical unit has no
corresponding MP_DEVICE_PRODUCT_PROPERTIES instance (i.e. the plugin
does not have a product-specific load balance algorithm for the LU product).

MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API

Remarks
The value must correspond to one of the supported values in
MP_PLUGIN_PROPERTIES.SupportedLogicalUnitLoadBalanceTypes.

Support
Optional

See Also

Multipath Management API SNIA Technical Position 84
Version 1.0

5.38 MP_SetOverridePath
Synopsis

Manually override the path for a logical unit. The path exclusively used to access the logical
unit until cleared. Use MP_CancelOverride to clear the override.

Prototype
MP_STATUS MP_SetOverridePath(
 /* in */ MP_OID logicalUnitOid,
 /* in */ MP_OID pathOid
);

Parameters
logicalUnitOid

The object ID of the multipath logical unit.

pathOid
The object ID of the path logical unit.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when logicalUnitOid or pathOid does not specify any valid object type.
This is most likely to happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when logicalUnitOid has a type subfield other than
MP_OBJECT_TYPE_MULTIPATH_LU or if pathOid has an object type other
than MP_OBJECT_TYPE_PATH_LU.

MP_STATUS_OBJECT_NOT_FOUND
Returned when logicalUnitOid or pathOid owner ID or object sequence number is
invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API

MP_STATUS_PATH_NONOPERATIONAL
Returned when the driver cannot communicate through selected path.

Remarks
This API allows the administrator to disable the driver’s load balance algorithm and force all
I/O to a specific path. The existing path weight configuration is maintained. If the
administrator undoes the override (by calling MP_CancelOverridePath), the driver will start
load balancing based on the weights of available paths (and target port group access state
for asymmetric devices).

If the multipath logical unit is part of a target with asymmetrical access, executing this
command could cause failover.

Support
Optional

See Also

Multipath Management API SNIA Technical Position 85
Version 1.0

5.39 MP_SetPathWeight
Synopsis

Set the weight to be assigned to a particular path.

Prototype
MP_STATUS MP_SetPathWeight(
 /* in */ MP_OID pathOid,
 /* in */ MP_UINT32 weight
);

Parameters
logicalUnitOid

The object ID of the path logical unit

weight
A weight that will be assigned to the path logical unit.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when pathOid does not specify any valid object type. This is most
likely to happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when pathOid ownerID or object sequence number is invalid.

MP_STATUS_INVALID_PARAMETER
Returned when pathOid has a type subfield other than
MP_OBJECT_TYPE_PATH_LU or when the weight parameter is greater than
the plugin’s maximumWeight property.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_FAILED
Returned when the operation failed.

MP_STATUS_UNSUPPORTED
Retusrned when the driver does not support setting path weight.

Remarks

Support
Optional

Multipath Management API SNIA Technical Position 86
Version 1.0

5.40 MP_SetPluginLoadBalanceType
Synopsis

Set the default load balance policy for the plugin.

Prototype
MP_STATUS MP_SetPluginLoadBalanceType(
 /* in */ MP_OID oid,
 /* in */ MP_LOAD_BALANCE_TYPE loadBalance
);

Parameters
oid

The object ID of the plugin.

loadBalance
The desired default load balance policy for the specified plugin.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when loadBalance is invalid or when oid has a type subfield other than
MP_OBJECT_TYPE_PLUGIN.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid ownerID or sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_FAILED
Returned when the specified loadBalance type cannot be handled by the plugin

MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API

Remarks
The value must correspond to one of the supported values in
MP_PLUGIN_PROPERTIES.SupportedPluginLoadBalanceTypes.

Support
Optional

See Also

Multipath Management API SNIA Technical Position 87
Version 1.0

5.41 MP_SetFailbackPollingRate
Synopsis

Set the polling rates. Setting pollingRate to zero disables polling.

Prototype
MP_STATUS MP_SetPollingRate(
 /* in */ MP_OID oid,
 /* in */ MP_UINT32 pollingRate
);

Parameters
oid

An object ID of either the plugin or a multipath logical unit.

pollingRate
The value to be set in MP_PLUGIN_PROPERTIES currentFailbackPollingRate or
MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES failbackPollingRate.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when one of the polling values is outside the range supported by the
driver or when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN
or MP_OBJECT_TYPE_MULTIPATH_LU.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid ownerID or object sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API

Remarks
If the object ID refers to a plugin, then this will set the currentFailbackPollingRate property in
the plugin properties. If the object ID refers to a multipath logical unit, this sets the
failbackPollingRate property.

Support
Optional

See Also
MP_AUTOFAILBACK_SUPPORT

Multipath Management API SNIA Technical Position 88
Version 1.0

5.42 MP_SetProbingPollingRate
Synopsis

Set the polling rates. Setting pollingRate to zero disables polling.

Prototype
MP_STATUS MP_SetPollingRate(
 /* in */ MP_OID oid,
 /* in */ MP_UINT32 pollingRate
);

Parameters
oid

An object ID of either the plugin or a multipath logical unit.

pollingRate
The value to be set in MP_PLUGIN_PROPERTIES currentProbingPollingRate or
MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES ProbingPollingRate.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_INVALID_PARAMETER
Returned when one of the polling values is outside the range supported by the
driver or when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN
or MP_OBJECT_TYPE_MULTIPATH_LU.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid ownerID or sequence number is invalid.

MP_STATUS_SUCCESS
Returned when the operation is successful.

MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API

Remarks
If the object ID refers to a plugin, then this will set the currentProbingPollingRate property in
the plugin properties. If the object ID refers to a multipath logical unit, this sets the
ProbingPollingRate property.

Support
Optional

See Also
MP_AUTOPROBING_SUPPORT

Multipath Management API SNIA Technical Position 89
Version 1.0

5.43 MP_SetProprietaryProperties
Synopsis

Set proprietary properties in supported object instances.

Prototype
MP_STATUS MP_SetPropritaryProperties (
 /* in */ MP_OID oid;
 /* in */ MP_UINT32 count;
 /* in */ MP_PROPRIETARY_PROPERTY *pPropertyList;
);

Parameters
oid

The object ID representing an MP_LOAD_BALANCE_PROPIETARY_TYPE,
MP_PLUGIN_PROPERTIES, or MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES
instance.

count
The number of valid items in pPropertyList.

pPropertyList
A pointer to an array of property name/value pairs. This array must contain the same
number of elements as count.

Typical Return Values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify a valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

MP_STATUS_INVALID_PARAMETER
Returned when pPropertyList is null or when one of the properties referenced in
the list is not associated with the specified object ID or oid has a type subfield
other than MP_OBJECT_TYPE_PROPRIETARY_LOAD_BALANCE,
MP_OBJECT_TYPE_PLUGIN or MP_OBJECT_TYPE_MULTIPATH_LU.

MP_STATUS_SUCCESS
Returned when the operation is successful

MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

Remarks
This API allows an application with a priori knowledge of proprietary plugin capabilities to set
proprietary properties. pPropertyList is a list of property name/value pairs. The property
names shall be a subset of the proprietary property names listed in the referenced object ID.

Support
Optional

See Also

Multipath Management API SNIA Technical Position 90
Version 1.0

5.44 MP_SetTPGAccess
Synopsis

Set the access state for a list of target port groups. This allows a client to force a failover or
failback to a desired set of target port groups.

Prototype
MP_STATUS MP_SetTPGAccess (
 /* in */ MP_OID luOid;
 /* in */ MP_UINT32 count;
 /* in */ MP_TPG_STATE_PAIR *pTpgStateList;
);

Parameters
luOid

The object ID of the logical unit where the command is sent.

count
The number of valid items in the pTpgStateList.

pTpgStateList
A pointer to an array of TPG/access-state values. This array must contain the same
number of elements as count.

Typical Return Values
MP_STATUS_ACCESS_STATE_INVALID

Returned when the target device returns a status indicating the caller is
attempting to establish an illegal combination of access states

MP_STATUS_FAILED
Returned when the underlying interface failed the commend for some reason
other than MP_STATUS_ACCESS_STATE_INVALID

MP_STATUS_INVALID_OBJECT_TYPE
Returned when luOid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

MP_STATUS_OBJECT_NOT_FOUND
Returned when luOid owner ID or object sequence number is invalid.

MP_STATUS_INVALID_PARAMETER
Returned when pTpgStateList is null or when one of the TPGs referenced in the
list is not associated with the specified MP logical unit or luOid has a type
subfield other than MP_OBJECT_TYPE_MULTIPATH_LU.

MP_STATUS_SUCCESS
Returned when the operation is successful

MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

Remarks
Only valid for devices that support explicit access state manipulation (i.e.
MP_TARGET_PORT_GROUP.explicitFailover must be true).

This API provides the information needed to set up a SCSI SET TARGET PORT GROUPS
command. The plugin should not implement this API by directly calling the SCSI SET

Multipath Management API SNIA Technical Position 91
Version 1.0

TARGET PORT GROUPS command. The plugin should use the MP drivers API (e.g. ioctl) if
available.

There are two reasons why this API is restricted to devices supporting explicit failover
commands. Without an explicit command, the behavior of failback tends to be device
specific. For some targets, a single

When the caller is finished using the list it must free the memory used by the list by calling
MP_FreeOidList.

Support
Optional

See Also

Multipath Management API SNIA Technical Position 92
Version 1.0

6 Implementation Compliance
An implementation of the API described in this document must meet the following requirements:

1. Provide an entry point for each API listed in this document.

2. Implement all APIs that are listed as mandatory to implement.

3. Attempt to perform or cause the performance of all of the actions that are specified for an
API when all parameters to that API are valid.

4. Fail an API call if the implementation is aware that one of the requirements specified for
that API cannot be satisfied.

It’s important to note that what is compliant with this specification is not simply an implementation
of the library, but an implementation of the library in combination with an implementation of a
plugin.

Multipath Management API SNIA Technical Position 93
Version 1.0

7 Notes

7.1 Backwards Compatibility
Clients should expect that code written for an earlier version of the API would continue to work
with newer implementations of the library and plugins. Revisions to the specification should make
all attempts to assure backwards compatibility.

There are times, where the specification was not clear and existing implementations are
inconsistent. In these cases, compatibility cannot be maintained with inconsistent interpretations.
Alternatively, it may be discovered that an existing interface lacks necessary details. The
developers of the specification may need to deprecate an interface in order to assure
interoperability going forward. In these cases, the compatibility issues are documented in this
specification; a client can look at the version number in the plugin properties to see which version
of the specification the plugin implements.

7.2 Client Usage Notes

7.2.1 Reserved Fields
Some structures in the API contain reserved fields. Clients shall ignore the values in any
reserved fields in any structures.

7.2.2 Event Notification Within a Single Client
The API interfaces for event reporting are described in section 3.3 Events on page 14. The
specific implementation used to deliver events within a client is specific to the library and/or plugin
implementation. Therefore, when a client receives an event it shall not use the thread delivering
the event for any significant amount of time. If the work needed to respond to an event is at all
significant the client should somehow save the information needed to respond to the event and
then have another thread perform the actual work to handle the event. If a client fails to do this it
may delay the delivery of subsequent events and it may even cause events to be lost. The
method a client uses to save the data of an event and causes another thread to respond to the
event is entirely client specific.

7.2.3 Event Notification and Multi-Threading
A client that uses the event notification APIs of the library shall also be multi-thread safe. A client
cannot assume that an event is delivered on the same thread that registered for the event, nor
can a client assume that the client created the thread used to deliver the event. The only thing a
client can assume about a thread used to deliver an event is that it was properly initialized to use
the C runtime library.

7.3 Library Implementation Notes

7.3.1 Multi-threading Support
Any implementation of this API, i.e. the library, shall be multi-thread safe. That is, the library shall
allow a client to safely have multiple threads calling APIs in the library simultaneously. It is the
responsibility of the library to synchronize the usage of any library resources being used by
different threads.

7.3.2 Event Notification and Multi-Threading
A client shall be able to call any API while the client is handling an event. Therefore, the library
implementation shall not leave any resources locked while calling a client’s event handler that
would be needed if the client’s event handler called an API. Otherwise, if the client’s event

Multipath Management API SNIA Technical Position 94
Version 1.0

handler did call an API, either the API would have to fail or the calling thread would deadlock
waiting for a resource.

7.3.3 Structure Packing
In order to ensure compatibility between different implementations of the Multipath API it is
necessary that each implementation provides header files and/or document compiler options so
that each structure is packed such that there are no padding bytes between structure members.

7.3.4 Calling Conventions
In order to maintain compatibility between different versions of implementations of the Multipath
API it is necessary that each implementation provides header files and/or document compiler
options so that all APIs in the Multipath API are called using the C calling convention.

7.4 Plugin Implementation Notes

7.4.1 Reserved Fields
Most structures in the API contain reserved fields. Plugins must zero out any fields that they
consider reserved.

7.4.2 Multi-threading Support
Plugins must also be multi-thread safe. A client shall be able to have multiple threads active at
anyone time. It is the responsibility of the plugin to synchronize the usage of plugin resources
being used by different threads.

7.4.3 Event Notification To Different Clients
Timely delivery of events to clients is necessary. Therefore, vendor implementations must not, in
any way, serialize delivery of events by plugins. It is not permissible for a vendor implementation
to allow one client to significantly delay delivery of events to any other client.

7.4.4 Event Notification and Multi-Threading
A client must be able to call any API while the client is handling an event. Therefore, a plugin
must not leave any resources locked while calling a client’s event handler that would be needed if
the client’s event handler called an API. Otherwise, if the client’s event handler did call an API,
either the API would have to fail or the calling thread would deadlock waiting for a resource.

7.4.5 Event Overhead Conservation
Although not required, it is strongly recommended that the plugin and driver have a coordinated
approach to event registration that allows driver/kernel event reporting to be disabled when no
clients are registered for types of events. This minimizes kernel overhead in handling events at
times when no clients are listening for events.

7.4.6 Function Names
Every plugin MUST implement functions with the same name as the API functions that is, the
common library API method MP_GetTargetPortGroupProperties() will function as a gateway
module to parse and invoke the plugin’s MP_GetTargetPortGroupProperties() method.

Multipath Management API SNIA Technical Position 95
Version 1.0

Appendix A - Device Names
This appendix contains information on how to specify the osDeviceName field in the
MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES. Whenever possible the values used in the
fields of these structures are identical to the values used in similar structures in the T11 FC HBA
API specification.

In the tables below text appearing in bold shall appear in the indicated position exactly as it
appears in the sample. Text appearing in italics is a placeholder for other text as determined by
the specified operating system.Initiator Port osDeviceName

This table describes recommended values for the osDeviceName field of the
MP_INITIATOR_PROPERTIES structure.

Operating System Value

AIX /dev/fscsin (for an FC initiator), /dev/iscsin (for an iSCSI initiator)

HP-UX /dev/tdn, /dev/fcdn

Linux /dev/name

Solaris /devices/name

Windows \\.\Scsin:

Multipath Management API SNIA Technical Position 96
Version 1.0

A.1 Logical Unit osDeviceName
This table describes recommended values for the osDeviceName field of the
MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES structure.

Value Operating
System

Disk/Optical CD-ROM Tape Changer

AIX
/dev/hdiskn (disk)
or
/dev/omdn (optical)

/dev/cdn /dev/rmtn Empty string

HP-UX /dev/dsk/cxtydz /dev/dsk/cxtydz /dev/rmt/nm Empty string

Linux /dev/sdn /dev/srn /dev/stn Empty string

Solaris /dev/rdsk/cxtydzs2 /dev/rdsk/cxtydzs2 /dev/rmt/nn Empty string

Windows \\.\PHYSICALDRIVEn \\.\CDROMn
../../../../..//CDROMn \\.\TAPEn \\.\CHANGERn

Multipath Management API SNIA Technical Position 97
Version 1.0

Appendix B - Synthesizing Target Port Groups
If the plugin/driver is supporting a device does not implement the T10 target port group access
interfaces, the plugin/driver should synthesize target port groups. This appendix describes how a
plugin/driver will implement this behavior. It’s assumed that the driver knows device-specific
multipath interfaces.

Consider an asymmetric access RAID array with two RAID controllers, each having one port.
The steady-state configuration is that some (multipath) logical units are assigned (i.e. optimized)
to each controller (which is one-to-one with a port in this example) and that hosts should access
those logical units exclusively through the port on the assigned controller.

The device logical units and ports map directly to API path logical units and target ports. In
addition, the plugin/driver should synthesize four target port groups. The logical units optimized
for one particular port are attached to a target port group in Active/Optimized state

Target Port

Path
Logical Unit

Target Port Group

AccessState: StandBy

Target Port Group

AccessState: Optimized

Path
Logical UnitPath

Logical Unit

Path
Logical UnitPath

Logical UnitPath
Logical Unit

Target Port

Target Port Group

AccessState: Optimized

Target Port Group

AccessState: Standby

Multipath
Logical Unit

Multipath
Logical Unit

Figure 6 Synthetic Target Port Groups

In the case of a hardware-initiated failover or a manual failover (MP_SetTPGAccess) that
effectively disables a port, the AccessState change for both target port groups associated with
one port. The table below summarizes the access state changes.

Old State New State

Active/Optimized Standby

Active/Non-optimized Standby

Standby Active/Non-optimized

In the case of a manual failback (MP_SetTPGAccess) to reestablish the steady-state
configuration, the states should be changed as depicted in Figure 6 Synthetic Target Port
Groups.

Target port groups should be associated with multiple logical units that share the same access
state for the associated ports. In other words, the plugin/driver should not synthesize separate
target port groups for each logical unit. In other words, MP_GetAssociatiatedTPDOidList should
return the same list of oids for all multipath logical units that share the same access states
through the same target ports.

Multipath Management API SNIA Technical Position 98
Version 1.0

If the plugin/driver knows through a vendor-specific interfaces that a target device has symmetric
logical unit access, it should synthesize a single target port group associated with all logical units
and target ports, with access state set to Active/Optimized.

Multipath Management API SNIA Technical Position 99
Version 1.0

Appendix C - Transport Layer Multipathing
SAS and iSCSI allow multiple physical ports to be aggregated into a virtual SCSI port. This
provides a multipath capability at a lower layer than the capabilities in this API. Each approach
has advantages:

• Transport-layer multipathing has simpler management capabilities because all LUNs on a
target share the same pathing configuration. Path switching tends to be more efficient at the
transport layer than at the higher SCSI layers described in this API.

• SCSI-layer multipathing (as described in this API applies to all SCSI transports and allows
failover and load-balancing across transports (for example, an array with FC and iSCSI ports
could support failover from FC to iSCSI). SCSI-layer multipathing allows per-LUN
configuration.

This specification does not address transport-layer multipathing. Transport-specific management
interfaces may be available (for example, SNIA iSCSI Management API 0 IMA – provides
interfaces for iSCSI path management). There may be cases where both layers of multipathing
are available on the same system. As used in this specification, the term “port” applies to the
aggregated, virtual port in configurations with transport-layer multipathing.

Multipath Management API SNIA Technical Position 100
Version 1.0

Appendix D - Coding Examples
This appendix contains samples of how to use the Multipath API. All of these examples are non-
normative; if there is a discrepancy between these examples and anything in any of the previous
sections of this document the examples should be considered incorrect and the previous sections
correct.

One note about the examples: the examples will all perform error detection, however they will not
perform error reporting. This is an exercise left to the reader.

There are three coding examples. They are:

• Example of Getting Library Properties

• Example of Getting Plugin Properties

• Example of discovering path LUs associated with an MP LU

Multipath Management API SNIA Technical Position 101
Version 1.0

D.1 Example of Getting Library Properties
//
// This example prints the properties of the MP library.
//
MP_STATUS status;
MP_LIBRARY_PROPERTIES props;

//
// Try to get the library properties. If this succeeds then print
// the properties.
//
status = MP_GetLibraryProperties(&props);
if (Status == MP_STATUS_SUCCESS)
{

printf(“Library Properties:\n”);
printf(“\tMP version: %u\n”,
 (unsigned int) props.implementationVersion);
printf(L“\tVendor: %s\n”, props.vendor);
wprintf(L“\tImplementation version: %s\n”,

props.implementationVersion);
printf(L“\tFile name: %s\n”, props.fileName);
printf(“\tBuild date/time: %s\n”, DateTime(&props.buildTime));

}

Multipath Management API SNIA Technical Position 102
Version 1.0

D.2 Example of Getting Plugin Properties
//
// This example gets the properties of the first plugin returned by
// the library.
//
MP_STATUS status;
MP_OID_LIST *pList;

//
// Get the list of plugin IDs.
//
status = MP_GetPluginOidList(&pList);
if (Status == MP_STATUS_SUCCESS)
{
 //
 // Make sure there’s a plugin to get the properties of.
 //
 if (pList->oidCount != 0)

{
 MP_PLUGIN_PROPERTIES props;

status = MP_GetPluginProperties(pList->oids[0], &props);
if (Status == MP_STATUS_SUCCESS)
{

printf(“Plugin Properties:\n”);
printf(“\tMP version: %u\n”, props.supportedMpVersion);
wprintf(L“\tVendor: %s\n”, props.vendor);
wprintf(L“\tImplementation version: %s\n”,

props.implementationVersion);
printf(L“\tFile name: %s\n”, props.fileName);
printf(“\tBuild date/time: %s\n”, DateTime(&props.buildTime))

}
 }

 //
 // Always remember to free an object ID list when it’s no longer

// needed. Failing to do so will cause memory leaks.
//

 MP_FreeOidList(pList);
}

Multipath Management API SNIA Technical Position 103
Version 1.0

D.3 Example of Discovering path LUs associated with an MP LU
//
//
// This example prints the name of each multipath logical unit,
// then prints information about each path.
//
MP_STATUS status;
MP_OID_LIST *lulist, *plist;
MP_UNIT32 lu_num, path_num;
MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES luProps;
MP_PATH_LOGICAL_UNIT_PROPERTIES pProps;
MP_TARGET_PORT_PROPERTIES tProps;
MP_INITIATOR_PORT_PROPERTIES iProps;
// Assume we’re just operating against one plugin – its
// OID is magically known…
MP_OID pluginOid = xxx;
//
// Get a list of the object IDs of all of the multipath LUs in the
// system.
//
status = MP_GetMultipathLus(pluginOid, &lulist);
if (status == MP_STATUS_SUCCESS)
{
 //
 // For each MP LU, first display some properties, and then get paths
 //
 mp_num = 0;

while (lu_num <= lulist->oidCount)
{
 status = MP_GetMPLogicalUnitProperties(lulist->oids[lu_num],
 &luProps);
 // assume status ok for the example…
 printf (L“OS Device %s LU ID %s\n”, luProps.deviceFilename,
 luProps.name);

status = MP_ GetAssociatedPathOidList(lulist->oids[lu_num],
&plist);

 // assume status ok
 path_num = 0;

while (path_num < plist->OidCount)
 {
 status = MP_GetPathLogicalUnitProperties(
 plist->oids[path_num], &pProps);

status = MP_GetInitiatorPortProperties (
 pProps.initiatorPortOid, iProps);
status = MP_GetInitiatorPortProperties (
 pProps.targetPortOid, tProps);

 printf(L“ Initiator: %s Target: %s\n”,
 iProps.name, tprops.name);
 MP_FreeOidList(plist);
 path_num++;

}
lu_num++;

 }
 MP_FreeOidList(lulist);
}

Multipath Management API SNIA Technical Position 104
Version 1.0

Appendix E - Library/Plugin API
This appendix describes the required interfaces between the library and the plugins.

The common library must assure that each Plugin is given a unique plugin ID. This is the second
field (ownerID) in an Object ID as described in section 3.5.2.

In most cases, the common library will use the ownerID of an object provided by the caller to
determine which plugin owns the object, and then will dynamically invoke that function in the
plugin.

The common library should provide the following APIs without invoking plugins:

• MP_CompareOIDs

• MP_FreeOidList

• MP_GetLibraryProperties

• MP_GetPluginOidList

• MP_GetAssociatedPluginOid

• MP_GetObjectType

• MP_RegisterPlugin

• MP_DeregisterPlugin

Each plugin must provide the following two functions:

• Initialize() - Provided by the plugin to address any initialization tasks.

• Terminate() - Provided by the plugin to address any termination tasks.

These are not used by client applications; they are exclusively used by the common library as
part of dynamically loading and unloading plugins.

