
2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Tango: distributed data structures over
a shared log

Mahesh Balakrishnan
Microsoft Research

Collaborators: Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran,
Michael Wei, John D. Davis, Sriram Rao, Tao Zou, Aviad Zuck.

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

building distributed systems with strong properties*
does not require complex distributed protocols…

 all you need is the right storage abstraction

*fault-tolerance, persistence, high availability, strong consistency,
elastic scalability, failure atomicity, transactional isolation, disaster
tolerance…

what this talk is really about

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

big (meta)data
 design pattern: distribute data, centralize metadata
 schedulers, allocators, coordinators, namespaces,

indices (e.g. HDFS namenode, SDN controller…)
 usual plan: harden centralized service later

 … but hardening is difficult!

“Coordinator failures will be handled safely using the ZooKeeper
service [14].” Fast Crash Recovery in RAMCloud, Ongaro et al., SOSP
2011.

“However, adequate resilience can be achieved by applying
standard replication techniques to the decision element.” NOX:
Towards an Operating System for Networks, Gude et al., Sigcomm
CCR 2008.

“Efforts are also underway to address high
availability of a YARN cluster by having passive/active
failover of RM to a standby node.” Apache Hadoop YARN: Yet Another
Resource Negotiator, Vavilapalli et al., SOCC 2013.

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

the abstraction gap for metadata

centralized metadata services are built using in-memory data
structures (e.g. Java / C# Collections)
- state resides in maps, trees, queues, counters, graphs…
- transactional access to data structures

- example: a scheduler atomically moves a node from a free
list to an allocation map

adding high availability requires different abstractions
- move state to external service like ZooKeeper
- restructure code to use state machine replication
- implement custom replication protocols

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

the Tango abstraction

the shared log is the source of
- persistence
- availability
- elasticity
- atomicity and isolation
 … across multiple objects

commit
record

uncommitted
data

shared log

a Tango object

=
view
in-memory
data structure

+
history
ordered
updates in
shared log

no messages… only appends/reads on the shared log!

1. Tango objects are easy to use
2. Tango objects are easy to build
3. Tango objects are fast, scalable

Tango runtime

application

Tango runtime

application

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

under the hood:

Tango objects are easy to use

 implement standard APIs (Java/C# Collections)
 linearizability for single operations

example:

curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))
 ledger.add(item);

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

under the hood:

Tango objects are easy to use

 implement standard APIs (Java/C# Collections)
 linearizability for single operations
 serializable transactions

example:

TR.BeginTX();
curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))
 ledger.add(item);
status = TR.EndTX();

 TX commits if read-

set (ownermap) has
not changed in
conflict window

TX commit record:
read-set: (ownermap, ver:2)
write-set: (ledger, ver:6)

speculative commit records: each client decides
if the TX commits or aborts independently
but deterministically
[similar to Hyder (Bernstein et al., CIDR 2011)]

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Tango objects are easy to build

class TangoRegister {
 int oid;
 TangoRuntime ∗T;
 int state;
 void apply(void ∗X) {
 state = ∗(int ∗)X;
 }
 void writeRegister (int newstate) {
 T−>update_helper(&newstate , sizeof (int) , oid);
 }
 int readRegister () {
 T−>query_helper(oid);
 return state;
 }
 }

object-specific state

invoked by Tango runtime
on EndTX to change state

mutator: updates TX
write-set, appends

to shared log

accessor: updates
TX read-set,

returns local state

15 LOC == persistent, highly available, transactional register

Other examples:
Java ConcurrentMap: 350 LOC
Apache ZooKeeper: 1000 LOC
Apache BookKeeper: 300 LOC

simple API exposed by runtime to object: 1 upcall + two helper methods
arbitrary API exposed by object to application: mutators and accessors

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

are Tango objects fast and scalable?

problem: shared logs don’t scale!
- fault-tolerant implementation requires a Paxos-

like consensus protocol…
- … and Paxos doesn’t scale.

secret sauce: the CORFU distributed shared log

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

the CORFU distributed shared log

CORFU

Tango runtime

shared log API:
O = append(V)
V = read(O)
trim(O) //GC
O = check() //tail

application

append to tail read from anywhere

flash
cluster

each logical entry is mapped to a replica set of flash pages

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

the CORFU protocol: reads

11

application

CORFU library

read(pos)

read(D1/D2, page#) Projection:
D1 D2
D3 D4
D5 D6
D7 D8

 D1 D3 D5 D7

 D2 D4 D6 D8

client

CORFU cluster

L0 L1 L2 L3 L4 L5 L6 L7 . .

D1/
D2

L0
L4
...

D3/
D4

L1
L5
...

D5/
D6

L2
L6
...

D7/
D8

L3
L7
...

page 0
page 1
…

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

the CORFU protocol: appends

12

application

CORFU library

append(val)

write(D1/D2, val) Projection:
D1 D2
D3 D4
D5 D6
D7 D8

reserve next position
in log (e.g., 100)

sequencer (T0)

 D1 D3 D5 D7

 D2 D4 D6 D8

CORFU append throughput: #
of 64-bit tokens issued per

second

client

CORFU
cluster

read(pos)

sequencer is only
an optimization!
clients can probe for
tail or reconstruct it
from flash units

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

chain replication in CORFU
client C1

client C2

safety under contention:
if multiple clients try to write to same log
position concurrently, only one wins
writes to already written pages => error

client C3

durability:
data is only visible to reads if
entire chain has seen it
reads on unwritten pages => error

requires `write-once’ semantics from flash unit

1
2

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

how far is CORFU from Paxos?

 D1 D3 D5 D7

 D2 D4 D6 D8

CORFU cluster

L0 L1 L2 L3 L4 L5 L6 L7 . .

D1/
D2

L0
L4
...

D3/
D4

L1
L5
...

D5/
D6

L2
L6
...

D7/
D8

L3
L7
...

page 0
page 1
…

Multi-Paxos protocols are
IO-bound at leader…
so is a single CORFU chain

CORFU shards consensus
across multiple chains:
no I/O bottleneck!

Multi-Paxos provides
subset of shared log
functionality

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

0 -
D1 D2
D3 D4
D5 D6
D7 D8

CORFU failures: flash units

0 1 2 3 4 5 6 7

 D1 D3 D5 D7

 D2 D4 D6 D8

0 1 2 3 4 5 6 7

D9

Projection 0
Projection 1
Projection 2

0 1 2 3 4 5 6 7 8 9

9 -
D10 D11
D12 D13
D14 D15
D16 D17

each Projection is a list of views

8 -
D1 D9
D3 D4
D5 D6
D7 D8

8 – 9
D1 D9
D3 D4
D5 D6
D7 D8

0 - 7
D1 a
D3 D4
D5 D6
D7 D8

0 - 7
D1 a
D3 D4
D5 D6
D7 D8

 D10 D12 D14 D16

 D11 D13 D15 D17

latency for 32-drive cluster:
tens of milliseconds

reconfiguration steps:
1. ‘seal’ current projection

at flash units
2. write new projection at

auxiliary

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

CORFU failures: clients

client obtains token from sequencer and crashes:
 holes in the log

solution: other clients can fill the hole

fast CORFU fill operation (<1ms) ‘walks the chain’:
-completes half-written entries
-writes junk on unwritten entries (metadata
operation, conserves flash cycles, bandwidth)

0 1 3 4 5 7 8 9

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

CORFU garbage collection: two models

– prefix trim(O): invalidate all entries before offset O

– entry trim(O): invalidate only entry at offset O

valid entries invalid entries

∞

valid entries invalid entries

∞

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Tango service 2 Tango service 1

C C C C C C

B B

B B

B B
 A

A
A

A

A A

A B C B A C A B
C

… …

the playback
bottleneck:
clients must read
all entries 
inbound NIC is a
bottleneck

B B B

C C C

A A A

solution: stream abstraction
- readnext(streamid)
- append(value, streamid1, …)

free list 

aggregation
tree 

 allocation
 table

each client only plays entries
of interest to it

A

A

C

a fast shared log isn’t enough…

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

skip B C B skip C skip B C A skip C skip A C A skip C skip B C B skip C skip B C A skip C skip A C A skip C

service 2 service 1

 C C C C C C

B B

B B

B B
 A

 A
 A
 A

A A

beginTX
read A
write C
endTX

decision
record
with

commit/a
bort bit

commit/abort?
has A changed?
don’t know!

commit/abort?
has A changed?

yes, abort

transactions over streams

free list 

aggregation
tree 

 allocation
 table

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

evaluation: linearizable operations

adding more clients  more reads/sec
… until shared log is saturated

beefier shared log  scaling continues…
ultimate bottleneck: sequencer

a Tango object provides elasticity
for strongly consistent reads

constant write load (10K writes/sec), each client adds 10K reads/sec

(latency = 1 ms)

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

evaluation: single object txes

each client does transactions over its own TangoMap

adding more clients  more transactions
… until shared log is saturated

beefier shared log  scaling continues…
ultimate bottleneck: sequencer

scales like conventional partitioning…
but there’s a cap on aggregate throughput

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

evaluation: multi-object txes

22

18 clients, each client hosts its own TangoMap
cross-partition tx: client moves element from its TangoMap to some
other TangoMap

similar scaling to 2PL…
without a complex distributed protocol

over 100K txes/sec when 16% of txes are
cross-partition

Tango enables fast, distributed transactions
across multiple objects

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

conclusion

Tango objects: data structures backed by a shared log

key idea: the shared log does all the heavy lifting
(persistence, consistency, atomicity, isolation, history,
elasticity…)

Tango objects are easy to use, easy to build, and fast.

Distributed systems do not require complex distributed
protocols… all you need is the right storage abstraction!

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

thank you!

	Tango: distributed data structures over a shared log
	what this talk is really about
	big (meta)data
	the abstraction gap for metadata
	the Tango abstraction
	Tango objects are easy to use
	Tango objects are easy to use
	Tango objects are easy to build
	are Tango objects fast and scalable?
	the CORFU distributed shared log
	the CORFU protocol: reads
	the CORFU protocol: appends
	chain replication in CORFU
	how far is CORFU from Paxos?
	CORFU failures: flash units
	CORFU failures: clients
	CORFU garbage collection: two models
	a fast shared log isn’t enough…
	transactions over streams
	evaluation: linearizable operations
	evaluation: single object txes
	evaluation: multi-object txes
	conclusion
	thank you!

