Seagate Kinetic Open Storage Platform

Mayur Shetty - Senior Solutions Architect

Water veridor Dévices With System Centre 24 12

RELATED STORIES

What's the first

Seagate is building hard disk drives with a direct Ethernet interface and object-style API access for scalable object stores, a plan which - if it works - would destroy much of the existing, typical storage stack.

Drives would become native key/value stores that manage their own space mapping with accessing applications simply dealing at the object level with gets and puts instead of using file abstractions.

***Reasast: Managing Multi-Vendor Devices with System Centre 2012

MOST

SAS versus

- Standard form factor
- 2 SAS ports
- SCSI command set
 - data = read (LBA, count)
 - write (LBA, count, data)
 - LBA :: [0, max]
 - data :: count * 512 bytes
 - CRC on cmd and PI on block

Kinetic Open Storage

- Standard form factor
- 2 Ethernet ports (same connector)
- Kinetic key/value API
 - value = get (key)
 - put (key, value)
 - delete (key)
 - key :: 1 byte to 4 KiB
 - value :: 0 bytes to 1 MiB
 - HMAC on cmd and SHA on value

Typical HA High Density

Intel server

- Double Socket
- 48GB Ram
- 1000w

SAS tray

Connected to the server

Low cost HA Configuration

Each drive talks to both switches

Each switch has 2 by 10Gb/s Ethernet

Kinetic Tray talks directly to ToR

No servers

System Hardware

Typical JBOD architecture

- Does not require a server, just JBODs to the ToR Switch
- 10 JBODS × 60 drives × 4TB = 2.4PB/Rack

Kinetic Drive

Provides RPC to Key/Value database

Data is pre-indexed

P2P (Drive to Drive) copy of key ranges

Communicate using existing Data Center Plumbing (TCP/IP)

Multiple masters - Data sharing between machines Configurable caching per command

Async, Sync, Flush

Local space management

Kinetic Systems

Clustering (performance, reliability, management)
Compatibility with large scale applications (S3, etc.)
Centralized Management

Reliability, availability, durability

Goals of API

Data movement

- Get/put/delete/getnext/getprevious
- Versioned (== for success), options

Range operations

Multiple masters

Authentication/Integrity/Authorization

Cluster-able

• Simple cluster configuration version enforcement

3rd party copy

Management

Existing Traffic Flow

Kinetic Traffic Flow

Cumulative operations ordered by length

Map of Operations

Performance Metrics

Same normal performance expectations

- Sequential Write: 50MB/s
- Random Write: 50MB/s
- Sequential Read: 50MB/s
- Random Read: 1.2x slower than traditional drives

Write Performance Results

Bootstrapping devices

Kinetic Security Deep Dive

Kinetic Protocol

Transports

Drive Security

Kinetic Protocol

Authentication Identity of Client Integrity Command and data Requests and responses Roles Get/put/management/security Replay prevention Messages inside a session Messages between sessions

Transports

Cleartext (Port 8123)

Normal Client (not recommended for configuration)

TLS (Port 8444)

Admin Client or normal client

Drive Security

ISE

- Erase all customer information and configuration
- quick return factory "remanufacture"

SED

- Pin Unlock at power on
- Over the TLS port

Conclusion

Next Generation Storage Devices

- Disaggregates storage from compute
- Enable innovation in hardware and software ecosystem
- Lower TCO

Integration with:

- Swift
- HDFS
- Scality
- Basho Riak
- Ceph

More information

- http://seagate.com/www/kinetic
- https://developers.seagate.com
- http://github.com/Seagate