-
SNIA

Advancing storage &
information technology

Multipath Management API

Version 1.1
“Publication of this Working Draft for review and comment has been approved by the Host
TWG. This draft represents a “best effort” attempt by the Host TWG to reach preliminary
consensus, and it may be updated, replaced, or made obsolete at any time. This document
should not be used as reference material or cited as other than a “work in progress.”
Suggestion for revision should be directed to http://www.snia.org/feedback/”

Working Draft

December 5, 2009

Revision History

Revision Date Sections Originator: Comments
1 1 October 2008 All Hyon Kim First draft of version 1.1
2 25 March 2009 6.8, 6.25, 6.28, | Hyon Kim Captured Device Product category
7.28 and Path statistics discussion.

3 6 April, 2009 6.28 — 6.32 7.29 | Hyon Kim Moved statistics bucket related
structures to separate sections.
New interface for distributed
statistics is added.

4 20 May, 2009 7.43 Hyon Kim Modified buffer names for
SendSCSI interface to
dataln/dataOut.

5 25 September, 2009 5.6, 6.15, 6.29, | Hyon Kim Statistics illustration, SAS transport

6.34 D.5 type description, statistics type for
read/write operations, snaptime
description, and code example for
distributed statistics are added.
MP_STATISTICS_RANGE_MODE and
timeSinceLastReset are removed.

6 10 October, 2009 Hyon Kim Incorporated comments from TWG

5.6, 6.8, 6.15, meeting on 10/1.
6.18, 6.25, 6.28,
6.29, 6.30, 6.31, Added code example D.5 and
6.32, 7.2, 7.25, moved illustration of distributed
7.28,7.36,7.42, statistics example from the code
7.43,7.44, D.5, example to section 5.6 Statistics.
D.6
Added
MP_STATUS_LU_NONOPERATION
AL status to interface
MP_GetMPLogicalUnitProperties.
7 15 October, 2009 Hyon Kim Incorporated comments from TWG
5.6, 6.8, 6.15, meeting on 10/15. Fixed various
6.18, 6.25, 6.28, typos.
6.29, 6.30, 6.31,
6.32, 6.33, 6.36, Section 6.28
7.2,7.25,7.28, MP_STATISTICS_UNSUPPORTED
7.29,7.36, 7.42, is newly added.
7.43,7.44,D.5,
D.6 Description of relativelD in section
6.36 is fixed.
Added statements in Remarks
section for checking support for

section 7.29
MP_GetPathLogicalUnitDistributedS
tatistics interface.

8 5 November, 2009 5.6, 6.25, 6.33, | Hyon Kim Changed *bytesRead to *readBytes
D.5,D.6 and *bytesWrite to writeBytes. The
range value of
MP_STATISTICS_BUCKET is
defined as non-inclusive upper limit.
MP_DEVICE_PRODUCT_* shifts
starts with 0 instead of 1.
MP_STATITSTICS_DATA_TYPE_*
changed to bit flag and proprietary
data type is defined.
9 30 November, 2009 6.30, 6.32, 6.33, | Hyon Kim Added more data types for
6.34 distributed statistics data.
Added
MP_DISTRIBUTED_STATISTICS_
MODE.
Updated timeUnit definition.
Changed range to boundary for
MP_STATISTICS_BUCKET.
10 4 December, 2009 All sections that | Hyon Kim Fixed more editorial errors through

are modified or

added for
Version 1.1
5.6, 6.8, 6.15,
6.25, 6.28, 6,29,
6.30, 6.31, 6.32,
6.33, 6.34, 6.36,
7.2,7.28,7.29,
7.36, 7.42, 7.43,
7.44,D.5, D.6

TWG review.

Completed updates for SNIA TC
review.

Suggestion for changes or modifications to this document should be sent to
http://www.snia.org/feedback/.

The SNIA hereby grants permission for individuals to use this document for personal use only,
and for corporations and other business entities to use this document for internal use only
(including internal copying, distribution, and display) provided that:

1.Any text, diagram, chart, table or definition reproduced must be reproduced in its
entirety with no alteration, and,

2.Any document, printed or electronic, in which material from this document (or any
portion hereof) is reproduced must acknowledge the SNIA copyright on that material,
and must credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this
document, sell any or this entire document, or distribute this document to third parties. All
rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be
requested by e-mailing tcmd@snia.org please include the identity of the requesting individual

and/or company and a brief description of the purpose, nature, and scope of the requested use.

Copyright © 2009 Storage Networking Industry Association.

CONTENTS

L SCOPE ..ottt 1
2 NORMATIVE REFERENCES......cccioiinnmimniisnsssssssissss s ssssss s s s nsass s 1
3 TERMS, DEFINITIONS AND ABBREVIATIONS......ccccoiniimtmminnmnnssrs s ssssss s ssssssssns 2
3.1 TERMS AND DEFINITIONS .eiiiuueeeieiuueeeeasseeeseaseeesassseessassseessassseesasssseessssssesssasssessassssessasssessanseessansneessnnne 2
3.2 ABBREVIATIONS 1 uttttiiiuteesssiuteessssseesssseeesssuseessssseessasseeeessasseeessaneeessasseeeseasssessassseessansenessansenessansnnesssnns 4

4 DOCUMENT CONVENTIONS ...t s sssss s ssssss s ssss s ssans 4
5 BACKGROUND TECHNICAL INFORMATIONcoiviitmmiiserrnissssissss s ssssss s sssssss s s ssssssssnas 5
5.1 OVERVIEW ..ttt b bbb bbb bbb bbb 5
5.2 TARGET PORT GROUPS ...ueiuiiitiiiieiits ittt bbb bbb bbb bbb b 6
5.3 RELATIONSHIP BETWEEN TARGET PORT GROUPS IN SCSI AND IN THIS API ...ccoviiiiiciicecr e 6
R A B L2737 | SRS 6
5.3.2 Symmetric and asymmetric MUILIPDATR ACCESScooevmeereeureeiieiieieesee et 9
5.3.3 Logical UNit QffiNity GTOUDS.....cocereeeereieirisieieieie sttt sttt n st sn s as s sensnnanes 10
RT3 WoTo o B /e T Lo 31 Tox 2V O RSN 10
LTS J 0 R €= Y= - ¥ SO 10
5.3.4.2 Load balancing algorithmsS. ... e e 10
5.3.4.3 Administrative preference — path Weight ... 11
5.3.4.4 Disable load balancing — override Path ... 11
5.3.4.5 DiSable PAthi..c i e e e e e nnen 11

5.3.5 MOAEI OVEIVIOW ...ttt s st as et s e st ness e aseaneansnanesnaeanees 12

5.4 CLIENT DISCOVERY OF OPTIONAL BEHAVIOR ...cecuviiieiuieseeeeeeteeteetessseesseesseesseesaessanesasesnsesnsesnsesnsesans 13

R O B T2 = 7 | SR 13
5.4.2 Discovery of load balancing DERAVIOTccccoeoeiereeieisescesieree ettt 14
5.4.3 Client discovery of failover/failback capabilities...........cioreorceneiiiieiesreecenieeens 15
5.4.4 Client discovery of a driver’s OS device file name beRavior............cceocccorvennnennenns 15
5.4.5 Client discovery of auto-failback cApabilities.......c..cooooorrsireeeriisesns s cnsesesennanenas 15
5.4.6 Client discovery of auto-probing capPaDIlities.......c.coieoeseieoeniiriesieeieeeeeeee e 16
5.4.7 Client discovery of support for LU assignment to target port groupsc.cceceeeevrenee. 17

5.5 EVENTS ottt bbb bbb bbb 17
T ST U 1 1 (00 17
N o 010 00 o0 s 20
5.7.1 LIDrary ANd PIUGINS ..ottt ettt st an s en e s 20
5.7.2 0S-independent implemMentAtIONccoueeveiueeeeereisissieie ettt nsnenes 20

ROV R 0) L=Tol A D TSN 21
5.7.4 ODJECE ID LISttt st s et s s st s et n e s st s s st anean e ansnsensannaeas 22

6 CONSTANTS AND STRUCTURES.......iiiiviminminsmnssssssssssssss s nssssss s 22
6.1 MP_W CHAR ..ot r e e e e et n e e e e e e e e e e e nenrenn e e eneas 22
6.2 MP_CHAR . ..o e e R e e e e e e e Rt e e e e e e R n e n e enea 22
6.3 MP_BYTE ..o e 22
6.4 MP_BOOL....oiiiiiiiiii i 22
6.5 MP_XBOOL ..ottt r e e s e e e e e e e e e R R e R e e e e e e R R e neneneas 22
6.6 MP_UINT32 ..ot e e n e e e e e e e e s n e e e nnene e e e e nnenn e neneneas 22
6.7 MP_UINTOA ...t e e e e a e b n s 22
6.8 MP_STATUS ..ot e 22
SEAEUS VAIUECS .ottt ettt ettt sttt ettt sttt e st s kst s s e e as e s e an e s s bt e b st asetnshs e nssbnnennas 22

MP_STATUS_LU_NONOPERATIONAL.....oi ittt b s 23

6.9 MP_PATH_STATE oottt e s e e e s s b b e e e s be e e s saabe e e s sbbeeeseabbeessanbaeessanbanessans 23
(000 £ 7 B 1 1 24
FD] 4 LT L 1 ST 24
D=2 17T L T 24
6.10 MP_OBJECT_VISIBILITY_FN ottt sttt s st e s te e e e s sna e e nane s snnessnnneennne s 24
D (00 11 o S 24
D e e 1 = =] S 24
D=2 17 Te L T 25
6.11 MP_OBJECT_PROPERTY_FN ...ttt rtee st s st e e st sne e s e s snne e enneennneas 25
D (00 11 Lo A 25
Do Do g LA =2 o S 25
D=2 12 e L TS 25
Lo /8 0 02 2 O M 1 4 < 25
(000] 1KY X B £ 25
D@FIMIEIONS ..ottt st s st s a8t eA st s A2t a8kt eA et s eh st es et baeen e esess s eneaeanesens 26
LT R 20\ 0 S0) D O SRRO 26
D 000 11 o S 26
D T2 L £ 26
D=2 17 Te L T 26
LT Y 0 S0] 0 D T I8 N AR 27
D (00 11 o S 27
D T2 L £ 27
D=2 17 Te L T 27
6.15 MP_PORT_TRANSPORT _T Y PE.... ittt s e s be s s bbe e s s bae e s snbaeeseans 27
(000] 1KY X B £ A 27
DFIMIEIONS ..ottt sttt st s et e e A st s SR st e sttt e A et s eh st es et basan e eseen s eneaeanesens 27
D=2 2o L T S 28
6.16 MP_ACCESS ST AT E _TYPE ... ettt re e s s rane e e s e sab e e s s ensee s sensaeessensaeeseans 28
(000] 1KY X B £ A 28
DFINIEIONS ..ottt st s st s et eA st s e A2t es ettt eA et s eh st es et baeeneesean s ene e anesaas 28
D=2 2o L T S 28
6.17 MP_LOAD _BALAN CE T Y PE . ittt ettt e s s e e s s nre e s ssana e e s ssarae s s ennee s senneessensenessnns 29
(000] 1KY X B £ 29
D@FIMIEIONS ..ottt sttt s st s ettt e At s e A st es et et eA et s eh st as et basen e esess s eneasanesans 29
D=2 12 e L T ST 29
6.18 MP_PROPRIETARY_PROPERTY ..ttt ettt st essnre e s ssnne e s s snre e s ssnnaeessnnee s snnnneessanns 30
D0) 1 T & 2 30
D T2 L E 3 30
D=2 Te L TS 30
6.19 MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES ..ottt 30
D 00 11 L 30
D T2 L E 3 S 30
D a1 T TS 30
6.20 MP_LOGICAL_UNIT_NAME _TYPE ..ottt st s s s svve e s e va e s svee e s e e snns 30
(000] 1KY A B 2T A TS 30
DFIMIEIONS ..ottt st a st s e ae e Rt s A st s b et eR et seh st aR ettt aneaneas e ene e s eneas 31
D a1 T g TS 31
6.21 MP_LIBRARY_PROPERTIES ...ttt ee st e s st s s sabe s s ssbe e s s ebae e s senvaeessnrenesanns 31

Vi

D =3 Lo S 31
6.22 MP_AUTOFAILBACK _SUPPORT ...ttt ettt s st e s ssve s s svve e s sevae e s ssven e ssneenesnns 32
(000] 1KY Ao B 2 T AT SR 32
DFIMIEIONS ..ottt s st a st s e ae e Rt s A st e s b et e R et seh st as et bt an e enese e ene e s eseas 32
D2 T T TS 32
6.23 MP_AUTOPROBING_SUPPORT ...ttt tee et s st s s ssbe s s sbve e s sesbae e s snrenessnneenssnns 32
(000] 1KY Ao B 2 T AU 32
DFIMIEIONS ..ottt s e a st e e Rt s At s b et e A et s e R st a s et bt an e anese e ene e s eneas 32
D2 T TS 33
6.24 MP_PLUGIN_PROPERTIES ... ettt sttt st s st s s seabe s s ssbe e s s sbae e s ssvaeassnrenesaans 33
D00 11 o 33
D =3 Lo S 33
6.25 MP_SUPPORTED_DEVICE_PRODUCT_CATEGORY ..uveiiieeie it 35
(00) R e 17 A 35
DFIMIEIONS ..ottt st a st s e ae e Rt s A st s b et eR et seh st aR ettt aneaneas e ene e s eneas 35
D a1 T g TS 36
N L U Yo T 36
6.26 MP_DEVICE_PRODUCT_PROPERTIES ..oo ottt ceee s e s va e s sar s s be e s 36
D00 11 o 36
D= Lo S 36
D=2 17T U T 37
6.27 MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES ...ttt 37
D00 11 o 37
D = Lo S 37
D= 17T U T 39
6.28 MP_STATISTICS_UNSUPPORTED ...cci ittt s e s s e s snrae e s nr e e e snns 39
6.29 MP_TIME_RESOLUTION_UNITccctitiiitieeeitee e cire e s srre e s ssareeesssnree s ssanse e s ssnnaessennnnessensneessansenessans 39
(000] 1KY X B £ A 39
6.30 MP_ST ATISTICS _DAT A _TYPE. et s s e bae e s s bae e s ssreeasaans 40
REMARKS ettt s bbb s s s s s s s s s s s s as s s aas s s s s s s s s s s s s s s s aassssasssssssssassnnsssnsssnssnnan 41
THE STATISTICS DATA TYPE IS USED WITHIN THE CONTEXT OF
MP_PATH_LOGICAL_UNIT_DISTRIBUTED _STATISTICS. weeeereeee et veee e 41
6.31 MP_STATISTICS_BUCKET ...ttt ettt ettt e s s e e sesba s s sbbe e s s ebaee s snbaeessnrenasaans 41
FORMAT ettt iiiiee ittt e s et e s e b e s e be e e e s e b b e e e s sa b b e e e e s sa e e s e bseeesaab s e e e s s be e e s sanbeeeseabbeeesennbeeesanbaeessnbenessnns 41
R0 0 28 41
THE VALUE OF THE BOUNDARY FIELD REPRESENTS EITHER TIME OR A COUNTER DEPENDING ON THE
TYPE OF STATISTICS DATA THAT THE BUCKET CONTAINS. oo ter s rensn s s s s s as s s e s s s s nnenens 41
6.32 MP_DISTRIBUTED_STATISTICS_MODE ...ttt sserre e snr e s br e s 41
R0 0 28 42
6.33 MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS weveireee et 42
6.34 MP_PATH_LOGICAL_UNIT_STATISTICS....ccttii ettt ssieee s ssrbe e s serae e s snree e ssbae e sanns 42
D 000 11 o S 42
D T2 L £ 43
6.35 MP_PATH_LOGICAL_UNIT_PROPERTIES. ...ttt etvees s s sve s s e s 44
D00 11 o 44
D=3 Lo S 45
D=2 17T U T 45
6.36 MP_INITIATOR_PORT_PROPERTIES ..ottt st ee s svve s s ve e s sme s s e s 45

Vii

) =] K 45
D2 1 Ll T S 46
6.37 MP_TARGET_PORT_PROPERTIES ...ttt ettt ettt ettt st st s saeesneesnnesnne s 46
D 0] 11 T 416
8 =] R 416
D2 1 Ll TS 47
6.38 MP_TARGET_PORT_GROUP_PROPERTIESooiteitieeteeeteeetee ettt sttt s 47
D00 11 e 47

) =] R 47
6.39 MP_TPG_STATE_PAIR ..ottt et et et ete et et e st eteesteesbeesaessbessaessaeesaessaeesaeesasssnsesnsesanesasenans 47
D00 11 o 47

) =] E 47
D2 L Ll T S 48
- N 0 £ T PP PRPPPRPPPRPPPRE 48
7.1 APT OVERVIEW ooutiiiteiiteeiteeieeceeetesteeteste e be s beasbeasbeassessasesasesasesnsesntesnseanseesseesaeesaeesasesanesasesnsesnnesnsennns 48
7.2 MP_ADDDEVICEPRODUCT T TOPLUGIN t1ttttttuttttestueeseessne 49
N L0 7 K OSSP 49

J 0 X 0T L S 49
Dol 2 LT =2 50
TYDICAl FEEUTTI VALUECS .vvvevvissersisiecisicts st st sis it atssesss st sss et asssessassssass et asssessassssassessasssesssssssassssssasssens 50
D2 1 Ll TS 50

R Y70 7] 210) f RSSO 50
YT ¥ £ 50
7.3 MP _ASSIGNLOGICALUNIT TOT P G uuuiituiieettueuiuesireesresserssssessesssssssesssssssssssssssssssssssssssssssss. 50
N2 T0 7 K S SSS 50

D 0170 5] 2T ST SS SR 50
e e D = =2 50
TYPICAL FEEUTTI VALUES ..ottt et s st s s s s s enens s anaes 51
D2 L T 51

N Y702 1T 51
Y22 Y 51
7.4 MP_CANCELOVERRIDEPATH . ..eveeeeeeeteeeeeeeeeeeeeeeteseessaasseeanessessasssaesneenssneasesseaeeneenessensenseeanessessenneneens 51
R4 2 10 R KSR SRS 51

D 0170 5] 2T ST S SR 51
e T e D = =2 51
TYPICAL FEEUTTI VALUES ...ttt s sttt n s st nenenensananaes 51
D2 L T S 52

N Y702 T o R 52
Y22 Y 52
7.5 MP_COMPAREOIDS ...ttt ettt cs et s e ee s s e e e s s b a e s s s eabe e s s sabae e s s esbaeessasbaeessanbanessanbenessansenassnns 52
SYTIOPDSIS ettt st sttt Rt R SRR AR R £t AR e R R st eR et et et neas e ne e s ne e nas 52

D 01101574 2SS 52
Do B o 1 T2 =2 52
TYDICAL FEUUTTI VALUECS ...ttt ettt as s anse s st sseas st assenanensannennaens 52
D2 L T 52

N Y70 2] 2o) f S 52
7.6 MP_DEREGISTERFOROBJECTPROPERTYCHANGES .vveeeeeeeeeeeeeeeeeeeeesesneeseaseeesessessessensesesnesnesseseesnens 52
R4 2 10 R KRSV 52

viii

D 0170 5] 2T S SN PYSSR 53

POUFAIM@LETS ..ttt sttt s 8 s st s a8 28 h sttt s e s s e s s s st e e s s bt neanenenennas 53
TYPICAL FEEUTTI VALUES ..ottt ettt s st s st anenenensananaes 53
R Y70 7] 210) f RSSO 53
ROMUATKS ..ottt st a s8Rt s A st s e a et e R et seR st a s e st e b et s e e et s e e nnenens 53
RY =3 Y OSSO 53
7.7 MP_DEREGISTERFOROBJECTVISIBILITYCHANGES ..veveveeeseeseeeseseseeeeseseesesseeeenessessessensenssesnesseseessens 53
R4 2 10 R KSR 53
D 0170 5] 2T ST S SR 54
D U T =] SRS 54
TYPICAL FEEUTTI VALUES .ottt s sttt s st anenenensananaes 54
N Y70 2] T 54
F 2] e SO ST ST TR 54
N Y=L 1 R0 BSOS 54
7.8 MP_DEREGISTERPLUGINuutiiiicitieeie i e esseee e e e ee s sasee e s sssseeesesnseeesesneessesseessansaeessnnsenessnnseessansenessann 54
N2 L0y K USSR 54
D 01101574 2SS 55
oo D L= =0 S 55
TYDICAL FEUUTTI VALUECS ..ottt ettt es et s as s anse st sess e aseenanens s s ennaens 55
N Y702 T o 55
F =] e L SRS 55
N Y=L 1 £ S SN 55
7.9 MP_DISABLEAUTOFAILBACK ..euviteuerterresresseeesesre st sresee e sse s e s e sse s sne e a e esennssressessnesnesnssessssnesns 55
SYTIOPDSIS ettt st s st s e R st ARt R SRR ARt AR e R R st aR ket et eneas e s e e s ne e nas 55
D 01101574 2L 55
oo D L= =0 S 55
TYDICAL REEUITI VALUES ...ttt ettt as st st seas s nse s e s ensaeas 55
N Y70 7] 2o) f S 56
NY L= 1 £ BRSO SN 56
7.10 MP_DISABLEAUTOPROBING ceeuuvteeeectieeesseeeeessueeesssseeessssseessessseessassssessassssessassssessansssessasseeessnsssessanns 56
N2 L0y K SRS 56
D 01101574 2L S 56
oo D = =0 S 56
TYDICAL FEUUTTI VALUECS ..ottt ettt s as st sse st ssean e assenanens e s ensaens 56
N Y702 T 56
RY =2 Y SRR 56
W S0) EY N0 10 20 o U & 57
N2 10 R KSR 57
D 0170 5] 2T S SNSRI 57
POUFAIM@LETS ..ttt sttt s 8 s st s a8 28 h sttt s e s s e s s s st e e s s bt neanenenennas 57
TYPICAL FEEUTTI VALUES ...ttt n s st n st nenenensananaes 57
N Y702 T 57
F =l e L SO ST S TTR 57
NY L= 1 R0 B SRS 57
7.12 MP_ENABLEAUTOFAILBACK ... uttttiictteeeesteeeeeseeesesseeesessseessessseessesseeesassseessassseessasssnessnnseessanssnessanns 57
N2 L0y K USSR 57
D 01101574 2SS 57
oo D = =0 S 57
TYDICAL FEUUTTI VALUES ..ottt ettt es st s as st sse st ssean e s e ennensananennaens 58

RY =3 Y SRR 58
7.13 MP_ENABLEAUTOPROBING .vuveeveeeetetteteaeeeeeeeeetessesseesseeaneassssssssasenssnesnessessenseneasessessenseesnssneseesnnneens 58
R4 2 10 R K SRS 58
D 0170 5] 2T ST S RS TR 58
D G U T =] SRS 58
TYPICAL FEEUTTI VALUES ..ottt s s st n st ananenensananaes 58
R Y70 7] 210) f SRSV 58
N Y=L T R0 SRS 59
7.14 MP_ENABLEPATH ..ottt bbb bbb s 59
N L0 7 K SRS 59
D 0170 5] 2T ST SS SR 59
D s U T =] SRS 59
TYPICAL FEEUTTI VALUES ..o.eeeeeee ettt s st s st anenen s s ananaes 59
R Y70 7] 220) ol STV 59
ROMUATKS ..ottt s et s st s e as e st e A st seh et e R et s e R st eR s s et et e s e ae e s e e nneneas 59
RY =2 Y S OSSR 59
W S 30 0 T8 20 20 0 00) 5 £ A 59
R4 2 10 R KOTSRS 59
D 0170 5] 2T S SN PYSSR 59
D S U T =] OSSR 59
TYPICAL FEEUTTI VALUES ..ottt st s st s st nenenensananaes 60
ROIMIATKS ...ttt sttt sttt e A st s e A st s e kst eA st s eh st as et s e ba e s e be it s e aeaneneas 60
N Y7000 £ T0) o SRRSO 60
7.16 MP_GETASSOCIATEDPATHOIDLIST .uttiiiiiiiiiiiiieisiiiieesssieesssssseesssssee s sssseesssssseesssssseesssssesssansenssnnns 60
N2 T0 7 K S SSS 60
D 0 Y 0T L N 60
Do 0 T2 =0 N 60
TYPICAL FEEUTTI VALUES ..ottt et s st s s s s s enens s anaes 60
ROIMUATKS ...ttt ettt st s ettt e At s e A2t st st eA st s A st as e e st a e ensesn s e e an s 60
N Y7040 £ 1o)UY 61
RY =2 Yo S SRR 61
7.17 MP_GETASSOCIATEDPLUGINOID «.vvivtiteeeeeeeeeeeeeseeseeaeeeeenesssesssssaesssnessessessesseessessessessesesnessesseseeanens 61
R 20 £ S 61
D 0 Y 0T L 61
Do 0 =T =0 N 61
TYPICAL FEEUTTI VALUES ...ttt s sttt n s st nenenensananaes 61
ROIMIATKS ..ottt ettt s et s et s et e e At s e A st s ekt eA et s At es e e s e tn e s e an it s e e anenens 61
NY 7000 210) ot PRSPPI 61
7.18 MP_GETASSOCIATED TP GOIDLIST cuuttitiiitiieiiireesisireesssseesssssseessssseessssses s ssssseesssssseessenssnsssnnsenssnnn 61
N L0 7 K S SSSS 61
) 0 Y 0T L N 61
Do 0 =T =0 SN 62
TYPICAL FEEUTTI VALUES ...ttt s st s s st nenenensananaes 62
ROIMUATKS ..ottt s e a8ttt e A et s e A st seh et e A st s eh st as e e s et n e s e enn s e e aneneas 62
N Y7000 £ L0) o SRRSO 62
RY =3 Y SRR 62
7.19 MP_GETDEVICEPRODUCTOIDLIST coveiveeeeeeeeeeeeeseesseeeseesesssssssesaeeessnsssessessessenssssssessessenesnessessesseasens 62
R 20 £ S 62

D 0 Y 0T L N 62

Do 0 =T =0 N 62
TYPICAL FEEUTTI VALUES ..ottt ettt s st s st anenenensananaes 63
ROIMIATKS ...ttt sttt sttt e A st s e A st s e kst eA st s eh st as et s e ba e s e be it s e aeaneneas 63
N Y7000 £ T0) o RSOOSR 63
RY =3 Y OSSO 63
7.20 MP_GETDEVICEPRODUCTPROPERTIES +..veveeeueetesseseeeeseeeesseesssseseeessnessessesssnsenesssssessessensassssssesesasens 63
R 20 £ 63
D 0Y 0T L N 63
Do 0 =T =0 SN 63
TYPICAL FEEUTTI VALUES .ottt s sttt s st anenenensananaes 63
N Y7000 210) ot PRSPPSO 64
RY =2 Y USSR 64
7.21 MP _GETINITIATORP ORTOIDLIST c.etiveiteeeeeeeeeeeeressesseasseeeesseesssssseeesssessessesseasesessssressesseseenesseseeseeasens 64
R 20 2 64
D 0 Y 0T L 64
Do 0 =T =0 SN 64
TYPICAL FEEUTTL VALUES ...ttt s sttt n s s e an s enensananaes 64
ROMUATKS ..ottt et s et s st s ettt e At s e A st es et et e A et s Rt e as et s e tn e s s ee e s e e an s 64
N Y702 T o 65
RY =2 Y S SRR 65
7.22 MP_GETINITIATORP ORTPROPERTIES ...eveeveeeueetessesseeeseeeessessssessesessnsssessessessenesssesessesseseansssessesseasens 65
R4 2 10 R K SRS 65
D 0170 5] 2T S SN PYSSR 65
D G U T =] SRS 65
TYPICAL FEEUTTI VALUES ...ttt s st n st nnenenensaninaes 65
N Y70 2] T 65
RY =2 Yo S SRR 65
7.23 MP_GETLIBRARYPROPERTIES ...veueevteteeseeeeeeeeeeesessesseassessnesssssssssassssnsanessessensenessessessessensansssessessensens 65
R4 2 10 R KSR SRS 65
D 0170 5] 2T ST SS SR 65
Do 0 =T =0 N 66
TYPICAL FEEUTTI VALUES ..o.eeeeeee ettt s st s st anenen s s ananaes 66
R Y702 /o 66
N Y=L T R USROS 66
7.24 MP_GETMPLUOIDLISTFROMTPG ..o s 66
SYTIOPDSIS oottt s R AR AR ARt n et n e nns 66
J oY 0T L S 66
Do o L L= =0 N 66
TYDICAl FEEUTTI VALUECS .vvvovvissersesiecisistsciste st sttt atssesss st sss et asssess s s ssass et esssessasnsassessasssessessssasssnssasssens 66
ROIMIATKS oottt ettt et b s etk st s e ae e A s s e kst s e e e R s et e ks e bbb et st s bn e b e st 67
NY 7000 £ T0) o SRRSO U PRSPPI 67
RY =2 Y S OSSR 67
7.25 MP_GETMPLOGICALUNITPROPERTIES . veeveeeuteessesseeeeeesesseesssssseeessnessessessessenesnsssessessessenssssssesesssens 67
R 20 2 67
D 0 Y 0T L N 67
Do 0 =T =0 N 67
TYPICAl REEUTTL VAIUES ...ttt en st n s s s s anaes 67
N Y702 /o 67

Xi

7.26 MP _GETMULTIPATHLUS ...tttiiiiitii ittt ase e s s e s s s sse e s s enae e s s narae e s nareeesnanneessanne 68
N L T0 7 K S S T SSS 68
J 0 X 0T LSS 68
Do o L2 =] N 68
TYDICAl FEEUTTI VALUECS .vvvvvissersisiecisistscisteissi st atssesss st sss et asssess s s ass et asssessassssasssessasssessassssasssnssasssens 68
F 11 L2 1 €SOSSN 68
N Y702 /T P 68
N Y=L T R0 SRS 68
7.27 MP_GETOBJECTTYPE ..iteeeeitisteseesee st st et ssesee s s e s snesse e sresse e s e sn e sme e e e s sesneeae e e e sreeneesennenneennennes 68
N L0 7 K SRS 68
D 0 X 0T L N 68
Do 0 =T =0 N 69
TYPICAL FEEUTTI VALUES ..o.eeeeeee ettt s st s st anenen s s ananaes 69
ROIMUATKS ..ttt ettt s et s st s et e At s e A st es ekt eA et s eh st es e e s et et s e ee s s e e an s 69
N Y7070 210) o SRS OO PP RSSPON 69
RY =2 Y S OSSR 69
7.28 MP GETPATHLOGICALUNITSTATISTICS .uuveeeeesurereesueeeeessseessessseeesessseessassseessassssessessssessansssessassenessnns 69
RN T00 1R S 69
D 0Y 018 N 69
e 01 =] =] N 69
TYDICAL FEUUITI VALUEGS ...ttt ettt sttt et st ss st ess s ebs e asstn s ess e s eas e assnsesssessesnsens 69
R Y=L T R0 BTSSR 70
7.29 MP_GETPATHLOGICALUNITDISTRIBUTEDSTATISTICS...uutetieiiueeeserreeesesreeessssseessssssnesssssseessassenessnns 70
TYDICAl FEEUTTI VALUECS .vvvvvissersisiecisistscisteissi st atssesss st sss et asssess s s ass et asssessassssasssessasssessassssasssnssasssens 70
N Y=L 1 £ SR N 71
7.30 MP_GETPATHLOGICALUNITPROPERTIES .eeeeiiiteteiiueeeeesueeesesseesssssseesssssseessesssnessesssnsssssssnsssansenssanns 71
R 10 2 RSOOSR 71
D 0T K0T 71
oo 0 = =0 71
TYDICAL FEEUITI VALUES ..ottt sttt st as e anse st seas e an e neens e s ensaens 72
N Y7000 2 L0) o SOOI 72
N Y=L 1 £ BSOS SSN 72
7.31 MP _GETPLUGINOID LIST .uuttieiieiiieieiitieeesceeeeereeesesseessessseessessseessessneessessseessassssessansenessnseessansseessnnn 72
N 20 2R 72
D 0T 0X SRS 72
Do 0 L= =] 72
TYDICAL FEUUTTI VALUECS ..ottt ettt es et as s asse st asess e aseannens e s ennaens 72
ROIMIATKS ..ttt s et a s8Rt A s s h et e R et s e R st aR s s e b et neas e s e nneneas 72
N Y7000 2 L0) o PO PP RSRTO 72
N Y=L 1 £ B S YSN 73
7.32 MP_GETPLUGINPROPERTIESuttttiiiitteeiiitteeeesiueeesssseeessssseesssssseessssssnessessssessesssnessansensssansenssssnsenssnnne 73
R 10 2 TSSO 73
D 0T K0T 73
Do 0 D = =0 S 73
TYDICAL FEEUITI VALUES ...ttt sttt st as s tnse st seas s anaeens e s ensaens 73
N Y7000 2 L0) o PO PP RSRTO 73
NY L= 1 £ B SSSN 73
7.33 MP_GETPROPRIETARYLOADBALANCEOIDLIST ..eviiutiieiiiee e e sreeeeieeecesaeee s sesnee e s sssneee s sennee s senneesenns 73

Xii

N 20 2R 73

D 0T 0X SRR 73
D e o 1 = =] S 73
TYDICAL FEUUTTI VALUES ..ottt ettt es st s s st as e asse s st asess s ennens e s ennaens 74
D=2 12 Te L T S 74
N Y7000 2 L0) o SO PTPPRSRR 74
Y=L] Ko B 74
7.34 MP_GETPROPRIETARYLOADBALANCEPROPERTIES.....uutuueeeeseessesssessessnnes 74
N 20 2R 74
D 0T 0Y USRS 74
D e e 1 = =] S 74
TYDICAL FEEUITI VALUES ...ttt ettt et as s anse st seas s sn e ensaesnensaens 75
N Y70 7] 2o) f S 75
Y=L] Ko B 75
7.35 MP_GETTARGETPORTGROUPPROPERTIES ..cccuteeiieecteeeiueeesreeeiteeeateessssessasessasessssssssasessasesssssessseesas 75
N2 L0y K USSR 75
D 01101574 2SS 75
D Al 8 1 Ta =] 75
TYDICAL FEUUTTI VALUECS ..ottt ettt es et s as s anse st sess e aseenanens s s ennaens 75
D=2 12 Te L T S 75
N Y7000 2 L0) o S PTPPRRSRRI 76
Y=L] Ko B 76
7.36 MP_GETSUPPORTEDDEVICEPRODUCTCATEGORY ...uuuuueeeeeeeeseeseessesssnnes 76
SVIIODSIS vt steeueeteieste sttt ettt s bttt et e st e skt et et e e s e s b e e ke e ae s e et e s e ek s eReeae s s e s e b e e Reeheean e s eseeseabenaneaneneanenrens 76
ol K0T A 0Y 8 TSRS 76
Do 0 1 = =) 76
TYDICAL FELUIT VALUECS .cvvveevsiisisieisiasissisiisisstsessss s e stasssstssassssessassssss e ssssss e assssssessesssssassssssssssssssssssasenssnen 76
ROINATKS.c..ocuveieiiirisisieiestesiecte st st et et e e st st e b sab e s bt st st e e b e b s ab e e b et et e b e e b s e b e et et e s b e n b e e b e s bears et e b ann e 76
Y7043 10 o S 76
Y0] KXo 76
7.37 MP _GET T ARGET P ORTOIDLIST uuuiiiiitiiiiiiieieiiiireisiiieesssssbeessessseessssseessessssessassssessesssnessassenesssssenssanns 76
R 10) TSSO 76
D 0T K0T N 77
D A a7 8 11 T =2 S 77
TYDICAL FEEUITI VALUES ...ttt ettt as s asse st seas s st ens e s ensaens 77
D a1 T Ll TS 77
N Y70 2] 2T) SRS 77
Y=L] KXo B 77
7.38 MP _GETTARGETPORTPROPERTIES ...ctuuttutttuesssnsnnns 77
R 10 2 TSSO 77
D 0T K0T 77
D A a8 1 T =2 77
TYDICAl FEEUTTI VALUECS .vvvovvissersesiecisistsciste st sttt atssesss st sss et asssess s s ssass et esssessasnsassessasssessessssasssnssasssens 78
N Y70 2] 2T) S S S SSS 78
Y=L] £ B 78
7.39 MP_REGISTERFOROBJECTPROPERTYCHANGES w.tivtrveeeeiseisriseeseeseseesssssessessesssessessessessensenssssssesesssens 78
N 10 2 TSSOSO 78
D 0T K0T N 78
D A a7 81 T =2 78

Xiii

TYDICAL FEEUITI VALUES ...ttt sttt st as s tnse st seas s anaeens e s ensaens 79

N Y7000 2 L0) o PO PP RSRTO 79
ROIMIATKS oottt ettt b s et et st s e e e A e s A a8 a e b s s ek st s et et n e st n et st 79
R Y=L T R0 BTSSR 79
7.40 MP_REGISTERFOROBJECTVISIBILITYCHANGES wvviverveeeeieresristessesessssessessessesssesssssessessesenssssssesesssens 79
R 10) RSOOSR 79
D 0T K0T 79
Do 0 0 = =0 S 79
TYDICAL FEEUITI VALUES ..ottt sttt as st sse st seas s snseens e s ensaens 80
N Y7000 2 L0) o SOOI 80
ROIMIATKS oottt ettt et b s etk st s e ae e A s s e kst s e e e R s et e ks e bbb et st s bn e b e st 80
SO QLSO .ttt AR AR At R R AR ae et neae e st nn b nas 80
7.41 MP_REGISTERPLUGIN ..tiiitttttiiittesisitttessssieesssseee s ssasee s s sssee s s sssee e s ssnne s s esseessesseessansaeessansaeessnsenssnnn 80
N L0 7 K SRS 80
J 0 X 0T L S 80
Do 0 L= =0 N 81
TYDICAl FEEUTTI VALUECS .vvvovvissersisiecisistscisteissi st atssesss st sss et asssessatsssass e s asssessassssasssessasssessessssasssnssasssens 81
N Y70 2] 2T) SRS 81
ROMUATKS ..ottt et s et s st s ettt e At s e A st es et et e A et s Rt e as et s e tn e s s ee e s e e an s 81
N Y=L T R0 SRS 81
7.42 MP_REMOVEDEVICEPRODUCTFROMPLUGINctiiiiiiiiiiiiiei st e s s e s s s snre e 81
N L0 7 K SRS 81
J 0 X 0T LSS 81
Do o D L= =0 N 81
TYDICAl FEEUTTI VALUECS .vvvvvissersisiecisistscisteissi st atssesss st sss et asssess s s ass et asssessassssasssessasssessassssasssnssasssens 82
ROIMIATKS oottt ettt et b s ettt a8 e e b s e A st s ket e b s s e kst s et e b a st n et e st 82
N Y7000 £ L0) ot PRSPPSO 82
RY =30V R0 T S SRS 82
7.43 MP_SENDSCSICOMMAND «..veveeeeeeeeeeeeeeaeeaeeeesessessesseassaeanessessssssseeaesnssneesessenseneesessessenseeanesnessesneneens 82
R 20 £ 82
D 0 X 0T L N 82
Do 0 =T =0 N 83
TYPICAL FEEUTTI VALUES ..o.eeeeeee ettt s st s st anenen s s ananaes 83
R Y702 /o 84
7.44 MP_SETDEVICEPRODUCTLOADBALANCETYPE ..ciiiiciiiiiiieesciieeescstieessssnsee s sssnaee s sssnaee s s snneessessneesenns 84
R 10 2 RSOOSR 84
D 0T K0T N 84
Do o D = =0 84
TYDICAL FEEUITI VALUES ..ottt an s anse st seas s ene s aenensaeas 84
F =l e L SO ST S TTR 84
N Y70 2] 2T) S S S SSS 84
7.45 MP_SETLOGICALUNITLOADBALANCETYPE ..ccutiiiiiiiiiiininiisreese s 85
N 72210 7 RS 85
Do 070 1574 2 TSRS 85
POFAINGEETS .ottt sttt st s s st s et e A st s e A st e sttt eA st s eh st aseebasanseneesnese e s eseas 85
TYDICAL FEEUITI VALUES ...ttt sttt st as s tnse st seas s anaeens e s ensaens 85
F =] e SRS 85
N Y70 2] 2T) SRRSO 85
7.46 MP_SETOVERRIDEPATH ...coitiitiieeeetirte st m e sn e nr e sn s snenn e e e nne s 85

Xiv

N2 L0y K USSR 85

D 01101574 2SS 85
Do 0 L= =] S 86
TYDICAL FEUUTTI VALUES ..ottt ettt es st s s st as e asse s st asess s ennens e s ennaens 86
ROMUATKS ..ottt st a s8Rt s A st s e a et e R et seR st a s e st e b et s e e et s e e nnenens 86
N Y7000 2 L0) o SO PTPPRSRR 86
747 MP _SETPATHWEIGHT «euveueeteeeeeeeeeeeeeeseaseaeeeesessessesseasseasessesssssesseassnssseesessesseneeressessenseneaneeseseesseasens 86
R 20 £ 86
D 0Y 0T L N 86
Do 0 =T =0 SN 86
TYPICAL FEEUTTI VALUES .ottt s sttt s st anenenensananaes 87
N Y7000 210) ot PRSPPSO 87
7.48 MP_SETPLUGINLOADBALANCETYPE ..iiiiiitiiiiiieisiiiieesssieesssssseesssssee s sssseesssssnesssssseessnnsansssansenssnnns 87
N L0 7 K SRS 87
J 0 X 0T L S 87
Do 0 L= =0 N 87
TYDICAl FEEUTTI VALUECS .vvvovvissersisiecisistscisteissi st atssesss st sss et asssessatsssass e s asssessassssasssessasssessessssasssnssasssens 87
ROIMIATKS oottt ettt et b s ettt s et e b s e ka8 a e b s et ek s e st ebn e st n et e st 88
R Y702 /o S 88
7.49 MP_SETFAILBACKPOLLINGRATE. ... ittt ittt ittt sttt e s s nae e s st e s snae e s s s na e e s st ae e s snreeesnnns 88
R 10) TSSO PP RSSTI 88
D 0T 0T 88
Do 0 0 = =0 S 88
TYDICAL FEEUITI VALUES ...ttt sttt st as s tnse st seas s anaeens e s ensaens 88
F =l e SO S T PT 88
N Y78 2] 2T) SRS 88
N Y=L T R0 SRS 88
7.50 MP_SETPROBINGPOLLINGRATEocitiiiiecee ettt sttt st te et s sae e sae e sneesneesnnesneeenes 89
N L0 7 K S SSSS 89
0 X 0T L S 89
Do 0 2 =0 N 89
TYDICAl FEEUTTI VALUECS .vvvovsissersisiecisists st st s et atssesss st ssssassasssess s s ass et assessasssassessasssessasnssasssnssasssens 89
F 11 12 1 €SS 89
R Y702 /o 89
N Y=L T R USROS 89
7.51 MP_SETPROPRIETARYPROPERTIEScccteittiitierteesteesteeseesseesseesssessessessessseessessasssasesnsssnsesnsssnsssnsesnns 89
SYTIOPDSIS oottt s R AR AR ARt n et n e nns 89
J oY 0T L S 89
Do o L L= =0 N 90
TYDICAl FEEUTTI VALUECS .vvvovvissersesiecisistsciste st sttt atssesss st sss et asssess s s ssass et esssessasnsassessasssessessssasssnssasssens 90
ROIMIATKS oottt ettt et b s etk st s e ae e A s s e kst s e e e R s et e ks e bbb et st s bn e b e st 90
NY 7000 £ T0) o SRRSO U PRSPPI 90
7.52 MP_SETTPGACCESS ..eortiiiriitiiriei st bbb 90
N L0 7 K SRS 90
J 0 Y 0T L S 90
oo s L= =] N 90
TYDICAl FEEUTTI VALUECS .vvvovvissersesiecisistsciste st sttt atssesss st sss et asssess s s ssass et esssessasnsassessasssessessssasssnssasssens 91
F 11 L2 1 €SOSSN 91
N Y702 /o 91

XV

8 IMPLEMENTATION COMPLIANCEoocciimmmisssms s s ssssssss s 91

9 IMPLEMENTATION NOTES ..ottt ssssssssss s sssssssss s s 92
9.1 BACKWARDS COMPATIBILITY ..uttteiiiureeeesteeesesseeesassseessassseessassseessassessssassessssassesssssssesssassssssssssnessansneesn 92
9.2 CLIENT USAGE NOTES.citiicttteeeiteeeeaureesesseeeseasseessaasseessassssessasseessasssesssasseesssasseesssssseessassssessassseessssseesss 92
9.2.1 RESEIVEM fIOIUS ..ottt ettt s st s e as s e s ens s ean e aneananen 92
9.2.2 Event notification Within a SiNGle ClIENTccoeveeeeoisinisaeee ettt 92
9.2.3 Event notification and Multi-tRreadingcuieoeoennseeeecsssesesss e s 92
9.3 LIBRARY IMPLEMENTATION NOTES ..cetieiuteeeesueeeeasuneeesassseessaseesssaseesssanseesssssseessessseessassssessnssssssasnsesn 92
9.3.1 MUlti-tRTEAdING SUPPOTTE ..ottt as e ess s eas s ane s esesssenneanaeas 92
9.3.2 Event notification and multi-tRreadingueceonnseeeeisesesess s 92
9.3.3 SErUCEUIE PACKING .ottt ettt st n st n s st et s s enees 92
9.3.4 CAlliNG CONVENEIONS ...ttt st as st asseseas s an st ansansens e s easaeas 93
9.4 PLUGIN IMPLEMENTATION NOTES cuttteitteesteesiteessseessseesseessseessseessesssseesssnesssnesssnsesssessasesssnsessnsessnnes 93
L O L= =T i =] L SRS 93
9.4.2 MUIti-tRTEAdING SUPPOTE ..ottt eas et s s es s easesn e s aneenseasessaeansanaeas 93
9.4.3 Event notification to different CIIENESccoveoeriecerersiesecise et ettt 93
9.4.4 Event notification and multi-tRreadingcuueeoeoennseeeesesesiss s 93
9.4.5 Event o0verRead CONSEIVALIONcoccuouerrireueiencesisissasasessisinesesessasessssisossesessasssssssssssesessssesssssses 93
9.4.6 FUNCEION NAMES....cviriiiiireisieiecisieestsse ittt sttt et sa st as et sns s st sn st 93
W T 0 D01 D3 ¥ 94
A.2 INITIATOR PORT OSDEVICENAME.......cccoimmmmnnmnnisssnssssss s s 94
A.3 LOGICAL UNIT OSDEVICENAMEccocc s 94
0 200 T 0 200 20 2 | N 99
D.2 EXAMPLE OF GETTING LIBRARY PROPERTIEScccccunsmmmnnnmmmnnmninnnnnsenssenssensnens 99
D.3 EXAMPLE OF GETTING PLUGIN PROPERTIES..........ccocinnmmmnmmnnnnnnnssssssessn, 99
D.4 EXAMPLE OF DISCOVERING PATH LUS ASSOCIATED WITH AN MP LU.....c..ccccvvenes 100
D.5 EXAMPLE OF GETTING STATISTICS ON A PATH LOGICAL UNITccccvvurmriunensianns 101
D.6 EXAMPLE OF GETTING DISTRIBUTED STATISTICS ON A PATH LOGICAL UNIT... 102
FIGURE 1 - ASYMMETRIC ARRAY EXAMPLEcooviimiiimtimmminnnennsennsenssessnsssnnns 22
FIGURE 2 - API INSTANCES CORRESPONDING TO ASYMMETRIC ARRAY EXAMPLEcccociunnnnne 23
FIGURE 3 - RELATIONSHIP BETWEEN VARIOUS OBJECTS IN THE MULTIPATH MODEL 26
FIGURE 4 - DRIVER REPRESENTATION OF A LOGICAL UNIT WITH MULTIPLE PATHS................ 27
FIGURE 5 - APIS RELATIVE TO THE OBJECTS FROM FIGURE 1.........ccooiiiiimmmrmnnninnnssssnssssnnsssnnes 52
TABLE A.2 - NAMES FOR THE OSDEVICENAMEcccoiimiimisnsssss s s s sssssssssssssssss s 91
FIGURE B.1 - SYNTHETIC TARGET PORT GROUPSccccniiimrimminsimnnsnnsnnss s sssssssssssssas 92

XVi

INFORMATION TECHNOLOGY -
MULTIPATH MANAGEMENT API

1 Scope

This specification provides management interfaces to standard capabilities defined in ISO/IEC
14776-453 (SPC-3) and common vendor-specific extensions to the standard capabilities. The
intended audience is vendors that deliver drivers that provide these capabilities. This standard
relates to SCSI multipathing features and excludes multipathing between interconnect devices
(such as Fibre Channel switches) and transport specific multipathing (such as iSCSI multiple
connections per session).

2 Normative references

The following standards contain provisions which, through reference in this text, constitute
provisions of this specification. All standards are subject to revision, and parties to agreements
based on this specification are encouraged to investigate the possibility of applying the most
recent editions of the standards indicated below.

ISO/IEC 14776-150, Information technology — Small Computer System Interface (SCSI) -
Part 150: Serial Attached SCSI (SAS)

ISO/IEC 14776-413, Information technology — Small Computer System Interface (SCSI) -
Part 413: SCSI Architecture Model - 3 (SAM-3)

ISO/IEC 14776-453, Information technology — Small Computer System Interface (SCSI)—
Part 453: Primary Commands - 3 (SPC-3)

ISO/IEC 14776-115, Information technology — Small Computer System Interface (SCSI) -
Part 115: Parallel Interface - 5 (SPI-5)

ISO/IEC 14165-251, Information technology — Fibre Channel (FC) - Part 251: Framing and
Signaling (FC-FS)

ISO/IEC 14165-133, Information technology — Fibre Channel (FC) — Part 113: Switch Fabric - 3
(FC-SW-3)

ISO/IEC 9899:1999, Programming languages — C
RFC 3720, Internet Small Computer Systems Interface (iSCSI)

NOTE - Copies of IETF standards may be obtained through the Internet Engineering Task Force (IETF) at
http://www.ietf.org.

OMG Unified Modeling Language (UML) Specification Version 1.5, March 2003

NOTE - For more information on the UML specification, contact the Object Modeling Group at http://www.omg.org.

Multipath Management API Working Draft
Version 1.1

3 Terms, definitions and abbreviations

3.1 Terms and definitions
For the purposes of this document the following terms and definitions apply.

auto-failback
capability of some multipath drivers to resume use of a path when the path transitions from
unavailable to available

auto-probing
capability of some multipath drivers to validate operational paths that are not currently being
used

available paths
set of paths for a logical unit that may be considered for routing I/O requests

NOTE For symmetric access devices, all paths are considered available. For asymmetric access devices, all paths in
active target port groups are considered available.

device file
operating system files (for instance UNIX, Linux etc.,) that facilitate communication with the
system’s hardware and peripherals

Device ldentification VPD page
VPD page that provides the means to retrieve identification information about the SCSI device,
logical unit, and SCSI port

hexadecimal-encoded binary data
ASCII character string used to denote the hexadecimal encoding of a binary string of octets

NOTE It may only contain the ASCII characters 0-9, A-F, and a-f. Two hexadecimal characters represent each byte of

binary data.

host
compute node connected to the SAN

initiator

SCSI device that initiates requests; also known as a client
NOTE In this document, initiator refers to an initiator port.

logical unit

addressable entity within a SCSI target

NOTE For example, RAID arrays expose each virtual disk volume as a logical unit. When the term “logical unit: is
used in this standard and is not qualified as a “multipath logical unit” or “path logical unit”, it refers to a logical unit in a
target device.

Multipath Management API Working Draft
Version 1.1

multipath logical unit
an object type of this API representing a “virtual “logical unit that coalesces multiple path logical
units for the same underlying device logical unit

object ID
unique identifier assigned to any object within the MP API

NOTE Objects sometimes represent physical entities, e.g. initiator ports. At other times, objects represent logical
entities, e.g. target port groups.

path
association between an initiator port, target port and logical unit, see 0

path logical unit
an object type of this API providing access to a single logical unit through a single initiator port
and single device port

NOTE Within this API, each path (see 0) is modelled as a path logical unit. The result of multipath drivers is a single
OS device file representing a multipath logical unit aggregating multiple path logical units.

persistent
quality of something being non-volatile

NOTE This usually means that the associated data is recorded on some non-volatile medium such as flash RAM or
magnetic disk and that the data survives beyond system reboots. Implicitly, the data is readable from the non-volatile
medium.

NOTE Examples of persistent storage:

eunder Windows, the registry would be a common place to find persistently stored values (assuming that the
values are not stored as volatile);

eunder any OS a file on magnetic hard disk would be persistent.

plugin
software, written for an OS, HBA or device vendor that provides support for one or more
multipath drivers

NOTE The plugin’s job is to provide a bridge between the library’s interface and the vendor’'s multipath driver. A
plugin is typically a loadable module, for instance, a DLL in Windows and a shared object in UNIX. A plugin is accessed
by an application through the Multipath Management API library.

product (or device product)
a particular model of target device, identified by the vendor, product and revision IDs returned in
the standard SCSI INQUIRY command response

target
SCSI device containing logical units and SCSI target ports that receives commands from a SCSI
initiator

target port group
set of target ports that are in the same target port access state at all times

Multipath Management API Working Draft
Version 1.1

unicode
system of uniquely identifying (numbering) characters such that nearly any character in any
language is identified.

VPD
vendor specific information about a device returned in response to a SCSI INQUIRY command
with the EVPD bit set (see SPC-3)

3.2 Abbreviations

API application programming interface
DLL dynamic link library

HBA host bus adapter

LUN logical unit number

OID object identifier

os operating system

UML Unified Modeling Language

UTF Unicode Transformation Format
VPD vital product data

4 Document conventions

The API is specified as a set of types and structures (see Clause 6) followed by a set of function
definitions (see Clause 7). This clause discusses the formats used in these clauses along with
conventions used in defining the API.

Constants are defined as a list of #defines followed by a typedef for a C integer type. C language
enums do not have a specific size; using #defines rather than enums helps assure client code is
interoperable across platforms and compilers — especially if used in C++ applications.

APl description format
Each API's description is divided into seven subclauses.

1 Synopsis
This subclause gives a brief description of what action the API performs.

2 Prototype

This subclause gives a prototype of the function in a format that is a combination of a C
function prototype and an Interface Definition Language (IDL) prototype. The prototypes
show the following:
ethe name of the API;
ethe return type of the API;
ecach of the parameters of the API, the type of each parameter, and whether that
parameter is an input parameter, output parameter, or both an input and an output
parameter.

3 Parameters

This subclause lists each parameter along with an explanation of what the parameter
represents.

Multipath Management API Working Draft
Version 1.1

4 Typical return values

This subclause lists the Typical Return Values of the APl with an explanation of why a
particular return value would be returned. It is important to note that this list is not a
comprehensive list of all of the possible return values. There are certain errors, e.g.
MP_STATUS_INSUFFICIENT_MEMORY, which might be returned by any API.

5 Remarks

This subclause contains comments about the API that may be useful to the reader. In
particular, this subclause contains extra information about the information returned by the
API.

6 Support

This subclause states that if an APl is mandatory to be supported, optional to be
supported, or mandatory to be supported under certain conditions.
oIf an API is mandatory to be supported a client can rely on the API functioning under
all circumstances.
o|f the API is optional to be supported then a client cannot rely on the API functioning.
oIf the API is mandatory to be supported under certain conditions then a client can
rely on the API functioning if the specified conditions are met. Otherwise a client
should assume that the API is not supported.

7 See also

This subclause lists other related APIs or related code examples that the reader might find
useful.

5 Background technical information

5.1 Overview

Open system platforms give applications access to physical devices by presenting a special set
of file names that represent the devices. Although end users typically don't use these special
device files, knowledgeable applications (file systems, databases, backup software) operate on
these device files and provide familiar user interfaces to storage. The device files have a
hierarchical organization, either by using files and directories or by naming conventions.

This hierarchy of device files (sometimes called a device tree) provides an effective interface for
simpler, desktop device configurations. Inside open systems kernels, the hierarchy is exploited to
allow different drivers to operate on different parts of the device tree. When the OS discovers
connected devices and builds the device tree, multiple paths to the same device may show up as
separate device files in the device tree. Separate storage applications using device files that
represent paths to the same device will overwrite each other’s data.

As storage products (typically disk arrays) strove for better reliability and performance, they
added multipath support. For OSes that lacked multipath support, the device and logical volume
manager vendors provided multipath drivers. Device standards lacked standard interfaces for
identifying multipath devices; so multipath drivers are often limited to specific device products.
Recently standards have been defined and OS vendors have started integrating multipath support
in their bundled drivers.

These drivers create special device files that represent multipath devices. Storage applications
like file systems can use these multipath device files the same way they would use a single-path
device file, but benefit from improved reliability and performance. In addition, the multipath
drivers provide some management capabilities, for example, failover or load balancing, that only
apply to multipath devices.

This standard focuses on devices accesses through SCSI commands. SCSI commands are sent
to a target device by an initiator. The target may consist of multiple logical units. For example, a

Multipath Management API Working Draft
Version 1.1

RAID array exposes virtual disk as separate logical units. A target device supporting multiple
paths and attached hosts will nearly always have multiple ports. Each permutation of initiator
port, target port and logical unit is commonly referred to as a path. With no multipath support in
place, the OS would see each path as separate logical units. The function of multipath drivers is
then to create a virtual multipath device that aggregates all these path logical units.

5.2 Target port groups

A logical unit may only be accessible through certain target ports. If the device supports
asymmetric access (see 5.3.2), certain ports may be preferred for access (sometimes this is
referred to as affinity. ISO/IEC 14776-453 (SPC-3) has introduced target port groups as a way for
target devices to represent access characteristics for logical units. A target port group is a
collection of ports. All the logical units associated with that target port group share the same
access state (active/optimized, active/non-optimized, standby or unavailable).

Target port groups are abstract elements that may or may not equate to an element of the target
system (such as a controller).

The concept of target port groups can be applied to all devices, even if they don’t actually
implement the SCSI standard interfaces. This APl does not require an SPC-3-compliant array; it
includes target port groups and uses the terminology of ISO/IEC 14776-453 (SPC-3) as a starting
point, but is extended to reflect common vendor implementations.

In order to simplify tasks for client software, all plugins/drivers make it appear that the underlying
hardware uses target port group interfaces. For example, consider an asymmetric array with two
ports where each port is primary (optimized) for half the logical units. The plugin/driver would
create four “virtual” target port groups; each logical unit would be part of two target port groups,
one with optimized access state for its primary controller and one with non-optimized access
state for the secondary controller. See Annex B for more details.

5.3 Relationship between target port groups in SCSI and in this API
5.3.1 General

This subclause describes the relationship between the interfaces defined in ISO/IEC 14776-453
(SPC-3) and this API related to target port groups.

The SCSI Device ldentification VPD page (i.e., page 83h) and REPORT TARGET PORT
GROUPS command allow initiators to discover the target port group configuration.

e Device Identification VPD page returns a list of identifiers. These include:

o relative target port identifier — a two-byte value with a target-unique ID for the
target port the INQUIRY is sent to. In this API, this is the relativePortID property in
MP_TARGET_PORT_PROPERTIES;

o target port group identifier — a two-byte value with a target-unique ID for the
target port group. In this API, this is the tpglD property of
MP_TARGET_PORT_GROUP_PROPERTIES.

e The REPORT TARGET PORT GROUPS command returns a list of target port groups, with
access state, and the list of relative port Ids of target ports that comprise each target port
group. The access state corresponds to this API's MP_ACCESS STATE_TYPE and
MP_TARGET_PORT_GROUP accessState property.

The SCSI SET TARGET PORT GROUPS command allows an initiator to set target port access
state — which causes failover or failback. This API provides MP_SetTPGAccess as an interface to
SET TARGET PORT GROUPS.

For a concrete example, Figure 1 depicts a RAID array with asymmetric access and two
controllers. Each controller contains two ports that always share the same access state. The
RAID configuration is set up with four logical units. Optimally each pair of logical units is
accessed through the ports on different controllers. In case either controller fails, all four logical
units can be accessed through the ports in the alternate controller.

Multipath Management API Working Draft
Version 1.1

Target Port Group 1

N Port 1 Port 2
Controller A
/LUNY /LUN"

L N

Target Port Group 2
N .‘II‘I\""
Port 3 Port 4
Controller B
JLUNY /LUN
NN

Figure 1 — Asymmetric array example

Multipath Management API

Working Draft
Version 1.1

The table below summarizes the information returned for this array configuration in the SCSI
INQUIRY identifiers and REPORT TARGET PORT GROUPS command response.

Logical Access from port 1 or 2 Access from port 3 or 4
unit TPG ID / State TPG ID / State
A 1/ Active optimized 2 / Standby
B 1/ Active optimized 2 |/ Standby
C 1/ Standby 2 | Active optimized
D 1/ Standby 2 / Active optimized

In case of a failure condition of controller A, all logical units as accessed from port 1 or 2 will
either see lack of response or a TPG access state of unavailable. Logical units A and B as seen
through ports 3 or 4 will see an access state of active non-optimized.

Note that the target port group access states for a given target port group ID differs depending on
which port the REPORT TARGET PORT GROUP command is issued to. In this API, each target
port group ID and access state permutation is modelled as a different instance of a target port
group class. The figure below is an instance diagram representing the API instances
corresponding to this same asymmetric array described above. The relevant API properties are
also included.

Multipath Management API Working Draft

Version 1.1

Target Port 1 Target Port 2 Target Port 3 Target Port 4

relativePortID: 1 relativePortID: 2 relativePortlD: 3 | | relativePortID: 4

Q

Target Port Group Target Port Group
AccessState: StandBy AccessState: Optimized
tpglD: 2 tpglD: 2
Target Port Group Target Port Group
AccessState: Optimized - AccessState: StandBy
tpglD: 1 tpgID: 1

' Logical Unit A ‘ Logical Unit B " Logical Unit C Logical Unit D |

Figure 2 — API Instances corresponding to asymmetric array example

5.3.2 Symmetric and asymmetric multipath access

A multipath device may have symmetric or asymmetric access. There may be a performance cost
when host drivers switch between asymmetric paths. Symmetric access devices avoid that
penalty. One common asymmetric configuration is a RAID array where access to a particular
logical unit is optimal through one device port and non-optimal through the other port.
ISO/IEC 14776-453 (SPC-3) includes standard interfaces for discovery and management of
multipath devices.1 In addition to standardization of logical unit identifiers and a failover
command, ISO/IEC 14776-453 (SPC-3) has interfaces that allow a target device to describe
target port groups. All the ports in a target port group share an access state that is either optimal
or non-optimal.

Setting the access state to active/optimized in all target ports groups associated with a logical
unit indicates symmetric access. A target system where all logical units have symmetric access

1 Although this API provides interfaces for discovery of multipath devices, it only provides information
available through installed plugins. |If a client applications requires comprehensive discovery of all
devices, it should also use platform-specific device discovery APls.

Multipath Management API Working Draft
Version 1.1

from all ports could be described with a single target port group with access state
active/optimized associated with all logical units and target ports.

A logical unit could have symmetric access through some, but not all ports. The optimal ports can
be used for load balancing, but the non-optimal ports should only be used for failover. This would
be modelled with target port groups with multiple associated ports and access state set to
active/optimized.

5.3.3 Logical unit affinity groups

Some target devices (particularly RAID arrays) have groups of logical units that failover/failback
as a group. In other words, when one logical units’ target port group access state changes, the
access state of the other logical units in the group also changes. ISO/IEC 14776-453 (SPC-3)
has a simple interface to discover these groups; the Device Identification VPD page response
may include a logical unit group identifier (identifier type 6h). All the logical units that expose the
same logical unit group identifier are members of the same logical unit group. A logical unit may
only be a member of a single logical unit group.

This API follows the same approach; MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES has a
property logicalUnitGrouplID. The details for this property (see 6.27) specify how a plugin/driver
sets this property if the target device does not support the SCSI interface.

This APl does not provide a mechanism to create a logical unit group or add members.
ISO/IEC 14776-453 (SPC-3) does not provide this capability. In some implementations, the
logical unit groups are artefacts of other target capabilities. For example, the logical unit groups
in some arrays follow the RAID topology of the configuration of snapshots. Due to the overlap
with these other target features, no interfaces for modification are provided in this API.

5.3.4 Load balancing
5.3.4.1 General

This APl includes four interfaces that influence load balancing.

¢ When multiple paths are available with the same access state, each individual I/0O request
can only be issued to one specific path. Multipath drivers may allow the administrator to
select an algorithm used to determine which path is selected.

e Some drivers allow the administrator to select a subset of available paths as most
preferred; assuming no errors are encountered, I/Os are restricted to the preferred paths.
But the non-preferred paths are not necessarily taken off-line; if the preferred paths
become not-available, the non-preferred paths may be used as a fallback. This capability
is implemented entirely in the host drivers and is independent of target port groups. Some
drivers allow multiple levels of preferences, referred to as administrative weights in this
API.

e Drivers may also allow an administrator to specify an override path, a path that is
temporarily used for all I/O.

e Drivers may also allow an administrator to disable a path, make a path temporarily
unavailable for load balancing.

The subclauses below describe these interfaces in more detail.
5.3.4.2 Load balancing algorithms

The API allows a plugin/driver to advertise multiple load balance algorithms that an API client can
offer to the administrator. Several common algorithms are defined in
MP_LOAD_BALANCE_TYPE. The plugin/driver can extend this list with driver-specific
algorithms. The API treats these proprietary algorithms opaquely, but provides a mechanism for
the plugin/driver vendor to expose a vendor and algorithm name to client applications. A client
could use these names to populate a “pull-down” list of load balance algorithms that includes
vendor-specific algorithms.

Some multipath drivers have load-balancing algorithms optimized for certain device types. The
device type is determined by the vendor and product IDs returned in the SCSI Inquiry data. A

Multipath Management API Working Draft
Version 1.1
10

plugin/driver can report its list of supported device types using
MP_DEVICE_PRODUCT_PROPERTIES.

5.3.4.3 Administrative preference — path weight

Path weight is a value assigned by an administrator specifying a preference to assign to a path
(or path logical unit). The drivers will actively use all available paths with the highest weight (see
below for clarification of available). This allows an administrator to assign a subset of available
paths for load balanced access and reserve the others as backup paths. For symmetric access
devices, all paths are considered available. For asymmetric access devices, all paths in active
target port groups are considered available.

The range of weights (maximumWeight) supported by the driver is exposed to clients as a
plugin/driver property. A driver with no path weight capabilities should set this property to zero. A
driver with the ability to enable/disable paths should set this property to 1. Plugins/drivers with
more weight settings can set the property appropriately.

Path weight has precedence over driver policy regarding path selection. In other words, if the
drivers understand that a path with a lower weight may be optimal, they should still limit routing to
paths the administrator has assigned the highest weight.

Other APIs may impact I/O routing (MP_DisablePath, MP_EnablePath, MP_SetOverridePath,
MP_SetTPGAccess) but no other APl changes the actual weight values. This approach allows an
administrator to define long-term policy using path weights and temporarily to override this policy
in order to address hardware failures, run diagnostic tests or quiesce hardware.

The default weight (prior to being set by the administrator) is the plugin/driver’'s maximumWeight
value.

Path weight shall be persisted by the plugin/driver.
Example:

A host has four paths to a LUN on a device with asymmetric access; in the normal case, paths
one and two are active and paths three and four are in standby state. The administrator would
prefer that:
e during non-failover periods, I/O should be through path 1;
e if an HBA failure impacts path 1, but the device is not in a failover state, then path 2
should be used; and
e if the device is in failover state (making paths 1 and 2 unusable) and all HBAs are
functioning, then path three should be used.

To configure these preferences, the administrator would assign weight 2 to paths one and three
and weight 1 to paths two and four. Actually, the value of the weights is not important as long as
the weights assigned to paths one and three are higher than those assigned to paths two and
four, respectively.

5.3.4.4 Disable load balancing — override path

The plugin/driver may optionally provide an interface (MP_SetOverridePath) for an override path.
An override path is a single path that the administrator can specify for all 1/0 to a logical unit.
Setting a preferred path will disable load balancing. Path weights are not changed when a path is
overridden.

5.3.4.5 Disable path

The plugin/driver may optionally provide an interface (MP_DisablePath) to disable a path.
Disabling a path makes it ineligible for load balancing in the future, but it may stay in use while
the drivers migrate activity to a different path. Path weights are not changed when a path is
disabled.

Multipath Management API Working Draft
Version 1.1
11

5.3.5 Model overview

The model for this API contains the following classes:

Library — the client library interface that front ends all the plugins;

Device product — information about a specific device supported by the driver;

Plugin — the driver-specific library implementing this API;

Proprietary load balance types — vendor name and description for driver-specific load

balance algorithms; opaque to the API, provides algorithm names to applications;

Initiator port — a port on the system hosting the plugin;

Target port — a port on the device;

Path logical unit — represents a single initiator/target port combination accessing a

logical unit. May not have a corresponding OS device file name;

e Multipath logical unit — the virtual device the aggregates all paths (path logical units)
referencing the same logical unit; and

e Target port group —a set of target ports that share a common access state.

Figure 3 is a UML diagram that shows the relationship between the various classes of objects in
the Multipath model.

MP Library
Initiator Port Path . Target Port
N 1 Logical Unit ;
T PortID PortID
MP Plugin &
/N /
O
L ProprietaryLoad
BalanceTypes
%)
/
Device Product . Multipath Target Port Group
VendorlD " Logical Unit N
ProductlD — AccessState

Figure 3 — Relationship between various objects in the multipath model

The structures and APIs defined below allow a client to navigate this model in order to discover
and manipulate multipath drivers and hardware. Each class in the diagram has a structure
containing properties (for example, MP_INITIATOR_PORT_PROPERTIES has properties for an
initiator port) and an API to get the properties (MP_GetlnitiatorPortProperties). Other APIs exist
to allow the client to follow the associations in the diagram above. For example, the rightmost
vertical line represents an aggregation of target ports in a target port group;
MP_GetTargetPortOidList returns a list of target port OIDs (OIDs act something like pointers, see
5.7.3). Other APIs change behavior by setting specific properties or by operating on groups of
objects.

Figure 4 below is a UML instance diagram that depicts the OS/driver view of a configuration with
four paths connected to the same logical unit (for example, a RAID volume). Two initiator ports
are connected to separate pairs of target ports, one optimized and one non-optimized, for the
particular logical unit. The model depicts the typical MP driver behavior of treating the multipath
logical unit as an aggregation of non-MP device files rather than an aggregation of paths.

Multipath Management API Working Draft
Version 1.1
12

Multipath Logical Unit

Initiator Port Initiator Port
OS sees each | | | |
LU 4 i Path Path Path Path
Imes Logical Unit Logical Unit Logical Unit Logical Unit
below MP
driver ‘ ‘
Target Port Target Port Target Port Target Port

0 0

Target Port Group Target Port Group

AccessState: Optimized AccessState: Standby

Figure 4 — Driver representation of a logical unit with multiple paths

Note that class/structure instances are not shared across plugin/drivers. But instances in
separate plugin/drivers may map to the same “real world” object. For example, multiple
plugin/drivers may represent the same initiator (HBA) port. A client would determine these ports
are the same by comparing the port name (for example, FC Port WWN) properties of the port
instances from the different plugin/drivers.

Installation and configuration of multipath drivers can be complex and hazardous. In some cases,
overlap between plugin/drivers could represent configurations that may be catastrophic for a
customer. This API does not enforce “best practices”. It assumes that the customer has installed
drivers in a “safe” manner. This API just reports on, and manipulates, the configuration.

5.4 Client discovery of optional behavior
5.4.1 General

Without multipath drivers, it’s usually straightforward to get a list of all the disks attached to a
system; usually this is just a list of all the device files with names indicating they are disks. But
with MP drivers installed, it may be difficult to determine which device files are subsumed by a
virtual multipath device. And the multipath driver may add additional special names to the list of
disk devices. The primary objective of this API is to create a deterministic way for management
software to discover the storage resources attached to a server.

In addition to the discovery functions, this API also provides functions for active management of
multipath drivers, functions to control failover/failback and load balancing. These active
management APIs are optional.

In general, support for optional behavior is exposed through properties of plugin/drivers (and
other objects). For example, MP_PLUGIN_PROPERTIES has a property canActivateTPGs that
informs a client whether this plugin supports failover/failback commands.

Multipath Management API Working Draft
Version 1.1
13

5.4.2 Discovery of load balancing behavior

This API has built-in support for common load balancing algorithms, but also allows plugins to
describe proprietary algorithms. These are simply exposed as opaque information that a client
can display or modify and are not actually interpreted by the API.

The client can determine the available load balance algorithms by looking at the
supportedLoadBalanceTypes property of MP_PLUGIN_PROPERTIES returned by
MP_GetPluginProperties. If MP_LOAD_BALANCE_TYPE_PRODUCT is set in
supportedLoadBalanceTypes, then the client should also use MP_GetDeviceProductOidList and
MP_GetDeviceProductProperties to get a list of target product types supported by the plugin. If
there is an MP_DEVICE_PRODUCT_PROPERTIES instance with the same vendor, product and
revision IDs as a specific logical unit, then the supportedLoadBalanceTypes property in that
MP_DEVICE_PRODUCT_PROPERTIES instance override the plugin-wide
supportedLoadBalanceTypes.

The client can determine the current load balance algorithm for a specific logical unit by looking
at the currentLoadBalanceType property of MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES
returned by MP_GetMPLogicalUnitProperties.

The client can set the load balance algorithm for a specific logical unit using

MP_GetMPLogicalUnitProperties and specifying a value other than
MP_LOAD_BALANCE_TYPE_UNKNOWN for currentLoadBalanceType.
MP_LOAD_BALANCE_TYPE_PRODUCT is only valid if vendor, product and revision from
MP_GetMPLogicalUnitProperties match those in an instance of

MP_DEVICE_PRODUCT_PROPERTIES returned by MP_GetDeviceProductProperties.
The client can set a plugin-wide default using MP_SetPluginLoadBalanceType.

For example, imagine an MP driver from Yoyodyne Corporation supports the following load
balancing algorithms:
e round robin (the default);

e leastlIO;
e two algorithms created by the driver-writers for any device types (known as YY1 and
YY2);

e an algorithm for one particular array model (the Acme 3500 array); and
e the YY1 algorithm is not supported for Acme 3500 logical units.

The driver does not allow the administrator to set different load balance types for different logical
units on a target.

There should be 1 instance of MP_PLUGIN_PROPERTIES with the following flags set in
supportedLoadBalanceTypes:

MP_LOAD_BALANCE_ROUNDROBIN 2 2h
MP_LOAD_BALANCE_TYPE_LEASTIO 8 8h
MP_LOAD_BALANCE_TYPE_PRODUCT 16 10h
MP_LOAD_BALANCE_TYPE_PROPRIETARY1 65536 10000h

MP_LOAD_BALANCE_TYPE_PROPRIETARY2 131072 20000h

The value of supportedLoadBalanceTypes of MP_PLUGIN_PROPERTIES in hex would be
3001ah (the sum of these load balance type flags).

The value of defaultLoadBalanceType in MP_PLUGIN_PROPERTIES would be
MP_LOAD_BALANCE_ROUNDROBIN.

There will be an instance of MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES for each flag
65536 and up. This object has three fields, the index from above, a name for the algorithm and a
name for the vendor. So in this example, we’ll have of these objects:

Multipath Management API Working Draft
Version 1.1
14

e 65536, “YY1", “Yoyodyne Corp.”
e 131072, “YY2", “Yoyodyne Corp.”

Since MP_LOAD_BALANCE_TYPE_PRODUCT is set, there will also be an instance of
MP_DEVICE_PRODUCT_PROPERTIES for each device with special driver load support. In this
example, there will be one instance with vendor set to “ACME *“, product set to “3500
and revision set to four nulls (this driver supports all revisions of the ACME 3500). The
supportedLoadBalanceTypes for Acme 3500 will be set to 2001ah — the same as the plugin-wide
supportedLoadBalanceTypes but without the bit for the YY1 algorithm.

Any logical wunit on an Acme 3500 array can have currentLoadBalanceType in
MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES set to any of the four load balance types in the
table above.

Any logical unit of non-Acme-3500 targets can have currentLoadBalanceType set to any of these
load balance types other than MP_LOAD_BALANCE_TYPE_PRODUCT.

5.4.3 Client discovery of failover/failback capabilities

Failover only applies to asymmetric access devices. A client can discover whether a logical unit
is on an asymmetric access device by looking at the
MP_MULTIPATH_LOGICAL_UNIT.asymmetric property.

MP_MULTIPATH_LOGICAL_UNIT. canActivateTPGs indicates support for the MP_ActivateTPGs
API — this API provides manual failover capabilities.

5.4.4 Client discovery of a driver's OS device file name behavior

Some multipath drivers leave the underlying OS device file names (those representing path
logical units) on this system. This behavior can be tested with
MP_PLUGIN_PROPERTIES.exposesPathDeviceFiles. If exposesPathDeviceFiles is set to false,
then the plugin will only expose a single device file name for a multipath logical unit.

If MP_PLUGIN_PROPERTIES.exposesPathDeviceFiles is true, then multiple device file names
are available for a multipath logical unit, one for each path.

Some multipath drivers create OS Device Files in non-standard locations. This behavior can be
tested with MP_PLUGIN_PROPERTIES.deviceFileNamespace. If this property is null, the device
file names associated with the plugin/driver match the “usual” platform names as documented in
A.3. If deviceFileNamespace is non-null it is a simple regular expression describing the format for
device file names, documented in the deviceFileNamespace property of
MP_PLUGIN_PROPERTIES (see 6.24).

5.4.5Client discovery of auto-failback capabilities

Auto-failback is a capability of some multipath drivers to resume use of a path when the path
transitions from unavailable to available. In some cases, this is accomplished with polling (the
driver attempts I/Os on unavailable paths).
MP_PLUGIN_PROPERTIES.autoFailbackSupport describes the driver's support for auto-failback.
MP_AUTOFAILBACK_SUPPORT_PLUGIN indicates auto-failback is managed the same across
all devices. MP_AUTOFAILBACK_SUPPORT_MPLU indicates auto-failback settings are set
separately for each multipath logical unit. MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU
indicates that the both global and per-multipath logical unit settings are supported.
If autoFailbackSupport is either MP_AUTOFAILBACK_SUPPORT_PLUGIN or
MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU, then these plugin properties are defined:
pluginAutofailbackEnabled
True if the administrator has requested that auto-failback be enabled for all paths
accessible via this plugin
failbackPollingRateMax
The maximum polling rate (in seconds) supported by the driver. Zero (0) indicates the
driver either does not poll for auto-failback or has not provided an interface to set the
polling rate.
currentFailbackPollingRate

Multipath Management API Working Draft
Version 1.1
15

The current polling rate (in seconds) for auto-failback. This cannot exceed
failbackPollingRateMax.
If autoFailbackSupport is either MP_AUTOFAILBACK_SUPPORT_MPLU or
MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU, then these multipath logical unit
(MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES) properties are defined:
autofailbackEnabled
MP_TRUE if the administrator has requested that auto-failback be enabled for this

multipath logical unit. If the plugin's autoFailbackSupport is
MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU, MP_UNKNOWN is valid and
indicates that multipath logical unit has auto-failback enabled if

pluginAutofailbackEnabled is true.

failbackPollingRateMax
The maximum polling rate (in seconds) supported by the driver. Zero (0) indicates the
driver either does not poll for auto-failback or has not provided an interface to set the
polling rate for multipath logical wunits. |If this property and the plugin's
failbackPollingRateMax are non-zero, this value has precedence for the associate logical
unit.

currentFailbackPollingRate
The current polling rate (in seconds) for auto-failback. This cannot exceed
failbackPollingRateMax. If this property and the plugin's currentFailbackPollingRate are
non-zero, this value has precedence for the associate logical unit.

5.4.6 Client discovery of auto-probing capabilities

Auto-probing is an optional capability to validate operational paths that are not currently being
used.
MP_PLUGIN_PROPERTIES.autoProbingSupport describes the driver's support for auto-probing.
MP_AUTOPROBING_SUPPORT_PLUGIN indicates auto-probing is managed the same across all
devices. MP_AUTOPROBING_SUPPORT_MPLU indicates auto-probing settings are set
separately for each multipath logical unit. MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU
indicates that the both global and per-multipath logical unit settings are supported.
If autoProbingSupport is either MP_AUTOPROBING_SUPPORT_PLUGIN or
MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU, then these plugin properties are defined:
pluginAutoProbingEnabled
True if the administrator has requested that auto-probing be enabled for all paths
accessible via this plugin
probingPollingRateMax
The maximum polling rate (in seconds) supported by the driver. Zero (0) indicates the
driver either does not poll for auto-probing or has not provided an interface to set the
polling rate.
currentProbingPollingRate
The current polling rate (in seconds) for auto-probing. This cannot exceed
probingPollingRateMax.
If autoProbingSupport is either MP_AUTOPROBING_SUPPORT_MPLU or
MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU, then these multipath logical unit properties
are defined:
autoProbingEnabled
MP_TRUE if the administrator has requested that auto-probing be enabled for this
multipath logical unit. If the plugin's autoProbingSupport is
MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU, MP_UNKNOWN is valid and
indicates that multipath logical unit has auto-probing enabled if pluginAutoProbingEnabled
is true.
probingPollingRateMax
The maximum polling rate (in seconds) supported by the driver. Zero (0) indicates the
driver either does not poll for auto-probing or has not provided an interface to set the
polling rate for multipath logical wunits. |If this property and the plugin's
probingPollingRateMax are non-zero, this value has precedence for the associate logical
unit.

Multipath Management API Working Draft
Version 1.1
16

currentProbingPollingRate
The current polling rate (in seconds) for auto-probing. This cannot exceed
probingPollingRateMax. If this property and the plugin's currentFailbackPollingRate are
non-zero, this value has precedence for the associate logical unit.

5.4.7 Client discovery of support for LU assignment to target port groups

If an asymmetric access device allows logical units to be assigned to target port groups,
MP_TARGET_PORT_GROUP.supportsLuAssignment will be true. This indicates that
MP_AssignLogicalUnitToTPG API is available.

5.5 Events

A long-running application may subscribe to events and be asynchronously notified of changes.
The API has two types of events:

e visibility changes — when objects appear or disappear; and
e property changes — when properties in an object change.

APIs allow clients to register or deregister for each type of event. Registration specifies the
address of a client-supplied callback method that is invoked when events occur. The client can
specify a specific object type (defaults to all object types). The client can specify a specific plugin
(defaults to all plugins). Multiple calls allow registration for a subset of object types and plugins.

The client can also specify “caller data” that may be used by the caller to correlate the event to
source of the registration. The plugin saves the caller data and returns it with each event.

See these subclauses for more detail about events: 6.10, 6.11, 7.6, 7.7, 7.39 and 7.40.

5.6 Statistics

The API provides interfaces to report performance related statistics for a path logical unit. It
defines a structure MP_PATH_LOGICAL_UNIT_STATISTICS to represent statistics typically used
to measure performance of SCSI /O operations. and also defines a structure
MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS to allow multipathing support to report
distributed statistics of certain performance data.

This subclause describes raw data that is collected through statistics structures and provides
examples that derive performance measurement out of such data.

0 Statistics Snapshot
The MP_PATH_LOGICAL_UNIT_STATISTICS structure includes

e number of I/O operations and number of processed bytes which may be subdivided into
read/write and data/control categories.

e |/O response time and wait time which may be subdivided into read/write category.

e time value that represents the elapsed time since the statistics counters have been
collected.

e time unit that is used across the structure.

The structure reports cumulative data that has been collected by the multipathing support that is
associated with the specified path logical unit. The APl clients acquire the
MP_PATH_LOGICAL_UNIT_STATISTICS data by calling the MP_GetPathLogicalUnitStatistics
interface. The statistics counter that is not supported by the associated multipathing support is
set to MP_STATISTICS_UNSUPPORTED constant. For example, when the multipathing support
that is associated with the specified path logical unit does not support control operation related
statistics data, the related fields, controlOps, controlReadOps, controlWriteOps, controlBytes,

Multipath Management API Working Draft
Version 1.1
17

controlReadBytes and controlWriteBytes, are set to MP_STATISTICS_UNSUPPORTED constant.
If the associated multipathing support collects statistics across data and control operations the
ioOps, readOps, writeOps, bytes, readBytes and writeBytes fields contain the counter for both
data and control operations. If the associated multipathing support collects statistics related to
data operations only, it reports such data through data operation related fields, dataOps,
dataReadOps, dataWriteOps, dataBytes, dataReadBytes, and dataWriteBytes. The I/O response
time and wait time may be broken into read and write operations. If the associated multipathing
support keeps track of response time and wait time for read and write operations separately, it
will report readResponseTime, writeResponseTime, readWaitTime and writeWaitTime
Otherwise, it reports ioResponseTime and ioWaitTime.

o Data Sampling

In order for an API client to collect sampling data between certain intervals, it may call the
MP_GetPathLogicalUnitStatistics interface multiple times. The delta of statistics data between
two calls can be used to derive statistics sampling. For example, two calls to
MP_GetPathLogicalUnitStatistics are made and the following data has been reported through the
MP_PATH_LOGICAL_UNIT_STATISTICS structure.

1st call 2nd call
snapTime 1,000,000 1,100,000
ioOps 250,000 750,000
bytes 1,250,000,000 2,250,000,000
ioResponseTime 500,000 500,500
timeUnit MP_MILLISEC MP_MILLISEC

The snapTime and ioResponseTime contain time value in milliseconds. The snapTime delta,
100,000 milliseconds, and the 1/O operation delta 500,000 can be used to get the sampling data,
5000 I/O operations per second over 100 second interval. The same thing can be applied to
bytes statistics. The byte delta between two calls is 1,000,000,000 bytes. The byte transfer rate
is 1,000,000 bytes per second and the average byte counts per 1/O operation is 2,000 bytes. The
response time is the time it took to actively serve an I/O request until it completes. The first call
reports 500,000 milliseconds ioResponseTime and the second call reports 500,500 milliseconds
IOResponseTime. The 500 milliseconds delta represents the total response time to serve 5000
I/O operations and the average ioResponseTime during that period time is 0.1 millisecond per I/O
operation.

o Distributed Statistics

The MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS structure is used to capture distributed
statistics for cetrain types of data such as response time, wait time and byte counts on a path logical unit if
the associated multipathing support provides such data. It utlizes an array of structure
MP_STATISTICS BUCKET as containers to store statistics data over multiple ranges of times or
counters. The individual MP_STATISTICS_ BUCKET contains number of occurrences and a boundary
value which indicates an upper bound for a range relative to the previous bucket within an array of
MP_STATISTICS_ BUCKET. It is up to the multipathing support to determine the resolution of distributed
statistics, by selection of the number of buckets and the ranges to track for each bucket, For example,
the tracking bucket ranges could be selected on a linear or logarithmic basis.

In order to get distributed statistics data an API client calls MP_GetPathLogicalUnitDistributedStatistics
interface which takes an OID for a path logical unit instance and statistics data type such as I/O response

time, wait time or byte counts and a buffer for an array of
Multipath Management API Working Draft
Version 1.1

18

MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS data. The bucketCounts field of the
MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS structure represents number of buckets (time
or counter ranges) included in the buffer. When the client allocated buffer is not large enough to hold the
data maintained by the mulitpathing support the API returns MP_STATUS MORE_DATA along with
actual number of buckets to be reported in the bucketCounts field to indicate that the proper buffer size to
be allocated by the API client.

As an example, a client called MP_GetPathLogicalUnitDistributedStatistics on an instance of the path
logical unit for MP_STATISTICS DATA_TYPE_RESPONSE_TIME. Assuming the associated
multipathing support provides distributed statistics for 1/O response time, it received the following data
through MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS.

bucketCounts: 8
snapTime: 1,000,000
timeUnit: MP_MILLISEC

range count
bucket[0] 1 0
bucket[1] 3 10
bucket[2] 10 500
bucket[3] 30 300
bucket[4] 100 50
bucket[5] 300 30
bucket[6] 1000 10
bucket[7] 32768 0

The data above is interpreted as follows. The multipathing solution tracks response time in 8

buckets of differing ranges but approximating a logarithmic distribution. The buckets are reported
with increasing range values. Since the ranges of the buckets are adjacent and non-overlapping,
only the upper range value of each bucket is reported in the response structure. For each range,
the first (lower) range value is non-inclusive and the second (upper) range value is inclusive as
shown in the illustration below. As an example the second statistics bucket holds a count of 1/0
operations having a response time greater than 1 and less than or equal 3. The I/O operations
count is 10. The MP_MILLISEC time resolution unit applies to all reported time values.

Response time range (in milliseconds) Number of 1/0s
>0 and<= 1 0
> 1 and<= 3 10
> 3 and <= 10 500
> 10 and <= 30 300
> 30 and <= 100 50
>100 and<= 300 20
>300 and<= 1000 10
> 1000 and <= 32768 0

The client made another call to the same path logical unit at a later time and received the data
shown in the illustration below. The counts have been incremented by the number of 1/O
operations that completed after the initial call. For instance, the second statistics bucket now
holds a count of 15 I/O operations that completed with a response time greater than 1 and less
than or equal to 3. This means that 15 minus 10 or 5 operations completed in the elapsed time
between the initial call and the later call.

It is the responsibility of the multipathing support to collect and report the counts of I/O
operations that fall within in each bucket, and to determine and report all values in the statistics

Multipath Management API Working Draft
Version 1.1
19

structure including number of buckets and range values for each bucket. It is the responsibility of
the client to interpret the contents of the returned structure including deltas in the contents
between successive calls to the interface.

Response time range (in milliseconds) Number of 1/0s
>0 and<= 1 0
> 1 and <= 3 15
> 3 and <= 10 550
> 10 and<= 30 330
> 30 and<= 100 75
> 100 and <= 300 40
> 300 and<= 1000 20
> 1000 and <= 32768 0

5.7 APl concepts
5.7.1 Library and plugins

A multipath management API implementation that is compliant with this standard shall facilitate
common management methodologies for configurations of multipath implementations provided by
multiple vendors and installed or removed at various times. This dynamic installation and removal
shall be achieved by a software structure that is either OS specific and fully documented by the
OS vendor or as defined in this standard for an OS independent structure (see 5.7.2).

Functions that are shown as mandatory but are not relevant in an OS specific implementation
shall return MP_STATUS_SUCCESS (e.g., MP_DeregisterPlugin) so that applications will not
have to code to the specific underlying implementation.

5.7.2 OS-independent implementation

The Multipath Management APl may be implemented using a combination of a library and
plugins.

Among other things, the library is responsible for loading plugins and dispatching requests from a
management application to the appropriate plugin(s).

In an OS-independent implementation, OS, HBA or device vendors provide plugins to manage
subsets of target devices. Typically, a plugin will take a request in the generic format provided by
the library and then translate that request into a vendor specific format and forward the request
onto the vendor’s device driver. In practice, a plugin may use a DLL or shared object library to
communicate with the device driver. Also, it may communicate with multiple device drivers.
Ultimately, the method a plugin uses to accomplish its work is entirely vendor specific.

Although rare, two plugins may model the same real-world resource. This could apply to initiator
or target ports or even logical units. The client determines equivalence by testing the properties
that contains names/Ids reported by the hardware itself (such as Port WWNs for FC ports). If the
client application is operating across multiple hosts, the same approach is used to look for
occurrences of the same target port of logical unit connected to multiple hosts. This allows a
client to have a single instance that aggregates information from several plugins. One
consequence of this overlap is that multiple plugins may report the same event to the client.

This architecture has no boot-time requirements. Plugins are registered with the common library
when they are installed. This would typically be done when MP drivers (and/or management
clients) are installed on the system. The registration information is persistent and resides in
either a registry or in a configuration file (see 7.41).

Multipath Management API Working Draft
Version 1.1
20

5.7.3 Object ID

The core element of the Multipath Management API is the object ID (OID). An object ID is a
structure that “uniquely” identifies an object. The reason uniquely is in quotes in the previous
sentence is that it is possible, though very unlikely, that an object ID would be reused and refer to
a different object.

An object ID consists of three fields:

a) An object type. This identifies the type of object, e.g. port, logical unit, etc., that the object
ID refers to;

b) An object owner identifier. This is a number that is used to uniquely identify the owner of
the object. Either the library or a plugin owns objects; and

¢) An object sequence number. This is a number used by the owner of an object, possibly in
combination with the object type, to identify an object.

The combination of these properties assures that object Ids are unique across plugins.

To a client that uses the library, object IDs shall be considered opaque. A client shall use only
documented APIs to access information found in the object ID.

There are several rules for object IDs that the library, plugins and clients shall follow. They are:
an object ID can only refer to one object at a time;

an object can only have one object ID that refers to it at any one time. It is not permissible to
have two or more object IDs that refer to the same object at the same time. In some cases this
may be difficult, but the rule still shall be followed.

For example, suppose a HBA port is in a system. That HBA port will have an object ID. If the HBA
is removed and then reinserted (while the associated plugin is running) then one of two things
can happen;

a) the HBA port can retain the same object ID as it had before it was removed; or
b) The HBA port can get a new object ID and the old object ID will no longer be usable.

This can only happen if the same HBA is reinserted. If a HBA is removed and another HBA is
inserted that has not been in the system while a particular instance of the library and plugins are
running then that HBA port shall be given a new object ID.

The library and plugins can uniquely identify an object within their own object space by using
either the object sequence number or by using the object sequence number in combination with
the object type. Which method is used is up to the implementer of the library or plugin.

Object sequence numbers shall be reused in a conservative fashion to minimize the possibility
that (due to wrapping of the sequence number) an object ID will ever refer to two (or more)
different objects in any one instance of the library or plugin. This rule for reuse only applies to a
particular instance of the library or plugin. Neither the library nor plugins are required or expected
to persist object sequence numbers across instances.

Because neither the library nor plugins are required to persist object sequence numbers a client
using the library shall not use persisted object IDs across instances of itself.

Similarly, different instances of the library and plugins may use different object IDs to represent
the same physical entity.

Multipath Management API Working Draft
Version 1.1
21

5.7.4 Object ID list

An object ID list is a list of zero or more object IDs. There are several APIs, e.g.,
MP_GetTargetPortOidList, that return object ID lists. Once a client is finished using an object ID
list the client shall free the memory used by the list by calling the MP_FreeOidList API.

6 Constants and structures

6.1 MP_WCHAR

Typedef'd as a wchar_t (wchar_t is part of the ISO C programming standard ISO/IEC 9899:1999)
and is available is all recent C compilers, though you may need special options to enable it).

6.2 MP_CHAR

Typedef'd as a char. Only used in contexts where wide characters cannot be used, such as
filenames and ASCII text returned from SCSI commands.

6.3 MP_BYTE

An 8-bit unsigned value. Typedef'd as an unsigned char.

6.4 MP_BOOL
Typedef'd to an MP_UINT32. A variable of this type can have either of the following values:

MP_TRUE
This symbol has the value 1.

eMP_FALSE
This symbol has the value 0.

6.5 MP_XBOOL
Typedef'd to an MP_UINT32. This is an extended boolean. A variable of this type can have any of
the following values:

MP_TRUE
This symbol has the value 1.

eMP_FALSE
This symbol has the value 0.

eMP_UNKNOWN
This symbol has the value FFFFFFFFh.

6.6 MP_UINT32
A 32-bit unsigned integer value.

6.7 MP_UINT64
A 64-bit unsigned integer value.

6.8 MP_STATUS

Status values

MP_STATUS_SUCCESS
This status value is returned when the requested operation is successfully carried out.
This symbol has a value of 0.

MP_STATUS_INVALID_PARAMETER
This status value is returned when parameter(s) passed to an APl is detected to be invalid
or inappropriate for a particular APl parameter. If the parameter is an object ID, this

Multipath Management API Working Draft
Version 1.1
22

status indicates that the object type subfield is defined in this standard, but is not
appropriate for this API. This symbol has a value of 1.
MP_STATUS_UNKNOWN_FN
This status value is returned when a client function passed into the API is not a previously
registered/known function. This symbol has a value of 2.
MP_STATUS_FAILED
This status value is returned when the requested operation could not be carried out. This
symbol has a value of 3.
MP_STATUS_INSUFFICIENT_MEMORY
This status value is returned when the API could allocate the memory required to
complete the requested operation. This symbol has a value of 4.
MP_STATUS_INVALID_OBJECT_TYPE
This status value is returned when an object id includes a type subfield that is not defined
in this standard. This symbol has a value of 5.
MP_STATUS_OBJECT_NOT_FOUND
This status value is returned when the object associated with the id specified in the API
could not be located or has been deleted. Note that an invalid object type is covered by
MP_STATUS_INVALID_OBJECT_TYPE so this status is limited to invalid object owner
identifier or sequence number. This symbol has a value of 6.
MP_STATUS_UNSUPPORTED
This status value is returned when the implementation does not support the requested
function. This symbol has a value of 7.
MP_STATUS_FN_REPLACED
This status value is returned when a client function passed into the API replaces a
previously registered function. This symbol has a value of 8.
MP_STATUS_ACCESS_STATE_INVALID
This status value is returned when a device processing MP_SetTPGAccess returns a
status indicating the caller is attempting to establish an illegal combination of access
states. This symbol has a value of 9.
MP_STATUS_PATH_NONOPERATIONAL
This status is returned when communication cannot be established with the path selected
by the caller. This symbol has a value of 10.
MP_STATUS_TRY_AGAIN
This status is returned when the plugin/driver is unable to complete the request at this
time, but may be able to complete it later. This symbol has a value of 11.
MP_STATUS_NOT_PERMITTED
The operation is not permitted in the current configuration, but may be permitted in other
configurations. This symbol has a value of 12.

MP_STATUS_LU_NONOPERATIONAL
This status is returned when the multipath logical unit is not operational so the requested
operation may not be completed. The symbol has a value of 13.
MP_STATUS_REBOOT_NECESSARY
This status is returned when host reboot is required for the requested operations to be
effective. For example, the addition of the device product requires a re-boot of the host
for a plugin to configure the associated device as a multipath device. The symbol has a
value of 14.
MP_STATUS_MORE_DATA
This status is returned when the client provided data buffer is not enough to store the
requested information. The symbol has a value of 15.

6.9 MP_PATH_STATE

MP_PATH_STATE is an enumeration used to indicate the status of a path. This status is not
returned by APIs, but is included in MP_PATH_LOGICAL_UNIT_PROPERTIES along with other
path properties.

Multipath Management API Working Draft

Version 1.1
23

Constants

#define MP_PATH_STATE_OKAY

#define MP_PATH_STATE_PATH_ERR

#define MP_PATH_STATE_LU_ERR

#define MP_PATH_STATE_RESERVED

#define MP_PATH_STATE_REMOVED

#define MP_PATH_STATE_TRANSITIONING
#define MP_PATH_STATE_OPERATIONAL_CLOSED
#define MP_PATH_STATE_INVALID_CLOSED
#define MP_PATH_STATE_OFFLINE_CLOSED
#define MP_PATH_STATE_UNKNOWN

©CoOo~NOOUA~AWNEFO

typedef MP_UINT32 MP_PATH_STATE;

Definitions

MP_PATH_STATE_OKAY

The path is okay.
MP_PATH_STATE_PATH_ERR

The path is unusable due to an error on this path and no SCSI status was received.
MP_PATH_STATE_LU_ERR

A SCSI status was received for an 1/O through this path indicating an error on the logical

unit.
MP_PATH_STATE_RESERVED

The path is unusable due to a SCSI reservation.
MP_PATH_STATE_REMOVED

The path is not used because the OS or other drivers marked the path unusable.
MP_PATH_TRANSIITIONING

The path is transitioning between two valid states.
MP_PATH_STATE_OPERATIONAL_CLOSED

The path appears operational, but has not been opened. This state only applies to

platforms that allow paths to be opened or closed.
MP_PATH_STATE_INVALID_CLOSED

No open was attempted but background probing determined that the path was dead.
MP_PATH_STATE_OFFLINE_CLOSED

The path appears operational, but has not been opened.
MP_PATH_STATE_UNKNOWN

The path is not operational, but the exact cause is not known.

Remarks

The error states are generally discovered when an 1/O requests do not complete with normal
status. The I/O request involved in this state change may have been issued by the multipath
plugin/driver or by a user application. This standard does not require that the plugin/driver
poll for error conditions. If these error states are known, they may be returned; if details are
not known, MP_PATH_STATE_UNKNOWN should be returned.

6.10 MP_OBJECT_VISIBILITY_FN

Format
typedef void (* MP_OBJECT_VISIBILITY_FN)(
/* in */ MP_BOOL becomingVisible,
/* in */MP_OID_LIST *pOidList,
/* in */void *pCallerData
)
Parameters

becomingVisible

Multipath Management API Working Draft
Version 1.1
24

An MP_BOOL value indicating that the list of object specified by pOidList have become
visible or have disappeared. A value of MP_TRUE indicates the objects have become
visible. A value of MP_FALSE indicates the objects have disappeared.

pOidList
A list of IDs of objects whose visibility is being changed. All objects referenced shall be of
the same type (different types may have different pCallerData values). All objects
referenced shall all have become visible or have disappeared.

pCallerData

The pCallerData passed into MP_RegisterForObjectVisibilityChanges. This may be used
by the caller to correlate the event to source of the registration.

Remarks

This type is wused to declare client functions that can be used with the
MP_RegisterForObjectVisibilityChanges and MP_DeregisterForObjectVisibilityChanges APls.

When the client function is finished using the list referenced by pOidList, it shall free the
memory used by the list by calling MP_FreeOidList.

6.11 MP_OBJECT_PROPERTY_FN

Format
typedef void (* MP_OBJECT_PROPERTY_FN)(
/* in */ MP_OID_LIST *pOidList,
/* in */void *pCallerData
)
Parameters
pOidList

A list of IDs of objects whose property values are being changed. All objects referenced
shall be of the same type (different types may have different pCallerData values)
pCallerData

The pCallerData passed into MP_RegisterForObjectPropertyChanges. This may be used
by the caller to correlate the event to source of the registration.

Remarks

This type is wused to declare client functions that can be used with the
MP_RegisterForObjectPropertyChanges and MP_DeregisterForObjectPropertyChanges APIs.

When the client function is finished using the list referenced by pOidList, it shall free the
memory used by the list by calling MP_FreeQOidList.

6.12 MP_OBJECT_TYPE

MP_OBJECT_TYPE is an enumeration used to differentiate API objects that are referenced by
object Ids (odes). MP_OBJECT_TYPE is not directly used by clients, but is used to form object
Ids.

Constants

#define MP_OBJECT_TYPE_UNKNOWN

#define MP_OBJECT_TYPE_PLUGIN

#define MP_OBJECT_TYPE_INITIATOR_PORT
#define MP_OBJECT TYPE_TARGET_PORT
#define MP_OBJECT _TYPE_MULTIPATH_LU
#define MP_OBJECT_TYPE_PATH_LU

#define MP_OBJECT_TYPE_DEVICE_PRODUCT
#define MP_OBJECT_TYPE_TARGET_PORT_GROUP

~N~Nouh~hWNEFEO

Multipath Management API Working Draft
Version 1.1
25

#define MP_OBJECT_TYPE_PROPRIETARY_LOAD_BALANCE 8

typedef MP_UINT32 MP_OBJECT_TYPE;

Definitions

MP_OBJECT_TYPE_UNKNOWN

The object has an unknown type. If an object has this type its most likely an uninitialized

object.
MP_OBJECT_TYPE_PLUGIN

Object type to identify a plugin module.
MP_OBJECT_TYPE_INITIATOR_PORT

Object type to identify an initiator port.
MP_OBJECT_TYPE_TARGET_PORT

Object type to identify an initiator port.
MP_OBJECT_TYPE_MULTIPATH_LU

Object type to identify the multipath logical unit.
MP_OBJECT_TYPE_PATH_LU

Object type to identify the path logical unit.
MP_OBJECT_TYPE_DEVICE_PRODUCT

Object type to identify the device product.
MP_OBJECT_TYPE_TARGET_PORT_GROUP

Object type to identify the target port group.
MP_OBJECT_TYPE_PROPRIETARY_LOAD_BALANCE

Object type to identify a proprietary load balance type.

6.13 MP_OID

Format
typedef struct _MP_OID

MP_OBJECT_TYPE objectType;

MP_UINT32 ownerld;
MP_UINT64 objectSequenceNumber;
} MP_OID;
Fields
objectType

Specifies the type of object. When an object ID is supplied as a parameter to an API the
library uses this value to ensure that the supplied object’s type is appropriate for the API
that was called.

ownerld
A number determined by the library that it uses to uniquely identify the owner of an object.
The owner of an object is either the library itself or a plugin. When an object ID is
supplied as a parameter to an API the library uses this value to determine if it should
handle the call itself or direct the call to one or more plugins.

objectSequenceNumber
A number determined by the owner of an object, that is used by the owner possibly in
combination with the object type, to uniquely identify an object.

Remarks

Clients of the APl shall treat this structure as opaque. Appropriate APIs, e.g.,
MP_GetObjectType and MP_GetAssociatedPluginOid, shall be used to extract information
from the structure.

Multipath Management API Working Draft
Version 1.1
26

6.14 MP_OID_LIST

Format
typedef struct MP_OID_LIST
MP_UINT32 oidCount;
MP_OID oids[1];
} MP_OID_LIST;
Fields
oidCount
The number of object IDs in the oids array.
oids
A variable length array of zero or more object IDs. There are oidCount objects IDs in this
array.
Remarks

This structure is used by a number of APIs to return lists of objects. Any instance of this
structure returned by an API shall be freed by a client using the MP_FreeOidList API.

Although oids is declared to be an array of one MP_OID structure it can in fact contain any
number of MP_OID structures.

6.15 MP_PORT_TRANSPORT_TYPE

Constants

#define MP_PORT_TRANSPORT_TYPE_UNKNOWN
#define MP_PORT_TRANSPORT_TYPE_MPNODE
#define MP_PORT_TRANSPORT TYPE_FC
#define MP_PORT_TRANSPORT TYPE_SPI
#define MP_PORT_TRANSPORT TYPE_ISCSI
#define MP_PORT_TRANSPORT TYPE_IFB
#define MP_PORT_TRANSPORT_TYPE_SAS
#define MP_PORT_TRANSPORT TYPE_FCOE

N~No ok~ WNREO

typedef MP_UINT32 MP_PORT_TRANSPORT_TYPE;

Definitions

MP_PORT_TRANSPORT_TYPE_UNKNOWN
The associated port is of an unknown transport type.
MP_PORT_TRANSPORT_TYPE_MPNODE
For initiator ports only, the associated port is known to be a virtual construct of an
underlying multipath driver.
MP_PORT_TRANSPORT_TYPE_FC
The associated port represents a Fibre Channel port. The Name for the port should be a
port WWN formatted as 16 unseparated hexadecimal digits, with no leading Ox.
MP_PORT_TRANSPORT_TYPE_SPI
The associated port represents a parallel SCSI port.
MP_PORT_TRANSPORT_TYPE_ISCSI
The associated port represents an iSCSI initiator or target port. The port name should be
an iSCSI name in “ign”, “eui”, or “naa” format and include *,i,0x” followed by an ISID (for
initiator ports) or “,t,0x” followed by a TGPID (for target ports).
MP_PORT_TRANSPORT_TYPE_IFB
The associated port represents a mapped Fibre Channel port on an InfiniBand initiator.
The name should be formatted as a FC PortWWN.

Multipath Management API Working Draft
Version 1.1
27

MP_PORT_TRANSPORT_TYPE_SAS
The associated port represents a Serial Attached SCSI port. The port name should be the SAS
address that is assigned to the port. The SAS standard allows different SAS ports to have the
same SAS address assigned if they are connected to different SAS domains. When multiple
ports are assigned with the same SAS address additional information such as an SAS phy
identifier as defined in SAS standard may be included to the name. The port name should be
world wide unique.

MP_PORT_TRANSPORT_TYPE_FCOE
The associated port represents a Fibre Channel over Ethernet port. The port name
should be formatted as a FC portWWN.

Remarks

This type serves two purposes. It identifies the type of transport and the format of the
PORT_ID property.

6.16 MP_ACCESS_STATE_TYPE

Constants
#define MP_ACCESS STATE_ACTIVE_OPTIMIZED Oh
#define MP_ACCESS_STATE_ACTIVE_NONOPTIMIZED 1h
#define MP_ACCESS STATE_STANDBY 2h
#define MP_ACCESS_STATE_UNAVAILABLE 3h
#define MP_ACCESS_ STATE_TRANSITIONING Fh
#define MP_ACCESS_ STATE_ACTIVE 10h

typedef MP_UINT32 MP_ACCESS_STATE_TYPE;

Definitions

MP_ACCESS_STATE_ACTIVE_OPTIMIZED
“All target ports within a target port group should be capable of immediately accessing the
logical unit.”

MP_ACCESS_STATE_ACTIVE_NONOPTIMIZED
“The processing of some ... commands may operate with lower performance than they
would if the target port were in the active/optimized target port ...access state.”

MP_ACCESS_STATE_STANDBY
The logical unit only supports a small set of management commands and no data transfer
commands.

MP_ACCESS_STATE_UNAVAILABLE
“The unavailable target port ... access state is intended for situations when the target port
accessibility to a logical unit may be severely restricted due to SCSI target device
limitations (e.g., hardware errors).”

MP_ACCESS_STATE_TRANSITIONING
Indicates the target device is in the process of transitioning between access states. This
value cannot be specified by a client, but can be exposed to clients as a property of a
target port group.

MP_ACCESS_STATE_ACTIVE
Used when the client is requesting that target port groups be activated (using the
MP_SetTPGAccess API) but does not care whether these port groups are given an active
optimized or active non-optimized state. This value will not be returned in a property. This
value is not defined in ISO/IEC 14776-453 (SPC-3).

NOTE The descriptions above, indicated in quotation marks, are quoted or paraphrased from ISO/IEC 14776-453
(SPC-3).

Remarks

This enumerated type provides the target port (group) states as described in
ISO/IEC 14776-453 (SPC-3).

Multipath Management API Working Draft
Version 1.1
28

6.17 MP_LOAD_BALANCE_TYPE

Constants
#define MP_LOAD_BALANCE_TYPE_UNKNOWN 1<<0,
#define MP_LOAD_BALANCE_TYPE_ROUNDROBIN 1<<1,
#define MP_LOAD_BALANCE_TYPE_LEASTBLOCKS 1<<2,
#define MP_LOAD_BALANCE_TYPE_LEASTIO 1<<3,
#define MP_LOAD BALANCE_TYPE_DEVICE_PRODUCT 1<<4,
#define MP_LOAD_BALANCE_TYPE_LBA REGION 1<<5,

#define MP_LOAD_BALANCE_TYPE_FAILOVER_ONLY 1<<6,

#define MP_LOAD_BALANCE_TYPE_PROPRIETARY1l 1<<16,

#define MP_LOAD_BALANCE_TYPE_PROPRIETARY2 1<<17
// additional proprietary types

typedef MP_UINT32 MP_LOAD_BALANCE_TYPE;

Definitions

MP_LOAD_BALANCE_TYPE_UNKNOWN
The load balance object has an unknown type. If the load balance field has this type then,
it is most likely an uninitialized object.
MP_LOAD_BALANCE_TYPE_ROUNDROBIN
Load balancing object type that is associated with the algorithm that performs load
balancing in a round robin manner.
MP_LOAD_BALANCE_TYPE_LEASTBLOCKS
Load balancing object type that is associated with the algorithm that performs load
balancing using the least blocks as a criteria to select a path for forwarding the request.
MP_LOAD_BALANCE_TYPE_LEASTIO
Load balancing object type that is associated with the algorithm that performs load
balancing using the least used I/O path as a criteria for forwarding the request.
MP_LOAD_BALANCE_TYPE_DEVICE_PRODUCT
The load balance algorithm is optimized for the device specified in the
MP_DEVICE_PRODUCT_PROPERTIES class associated with the logical unit.
MP_LOAD_BALANCE_TYPE_LBA_REGION
Load balancing object type that is associated with the algorithm that performs load
balancing using the sequential stream detection algorithm.
MP_LOAD_BALANCE_TYPE_FAILOVER_ONLY
Set in MP_DEVICE_PRODUCT_PROPERTIES when the plugin/driver has determined that
the device supports SCSI 2 RESERVE/RELEASE. Used by API clients to indicate that
SCSI 2 reservations are in use and multipathing is only to be used for failover.
MP_LOAD_BALANCE_TYPE_PROPRIETARYX
The load balance algorithm is proprietary. This bit mask supports up to sixteen proprietary

types.
Remarks
Plugin support for device-type specific load balance types is expressed through instances of
MP_DEVICE_PRODUCT_PROPERTIES. If this property is
MP_LOAD_BALANCE_TYPE_DEVICE_PRODUCT then the vendor, product and revision
properties of the logical unit shall match those of instances of

MP_DEVICE_PRODUCT_PROPERTIES. In contexts where MP_LOAD_BALANCE_TYPE
refers to the current or default value, a single flag should be set or the value should be zero if
no load balancing algorithm is in use.

See MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES.

Multipath Management API Working Draft
Version 1.1
29

6.18 MP_PROPRIETARY_PROPERTY

Format
typedef struct _MP_PROPRIETARY_PROPERTY
MP_WCHAR name[16];
MP_WCHAR value[48];
} MP_PROPRIETARY_PROPERTIES;
Fields
name
A null terminated Unicode string containing the name of the proprietary property.
value
A null terminated Unicode string containing the value associated with the proprietary
property.
Remarks

A name and value for a proprietary property. Arrays of proprietary properties are included in
some data structures.

6.19 MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES

Format
typedef struct _MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES
{
MP_LOAD_BALANCE_TYPE typelndex;
MP_WCHAR name[256];
MP_WCHAR vendorName[256] ;
MP_UINT32 proprietaryPropertyCount;
MP_PROPRIETARY_PROPERTY proprietaryProperties[8];
} MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES;
Fields
typelndex
The value (65536 or greater) representing a vendor-specific load balance algorithm.
name

A name for the vendor-specific load-balancing algorithm. This name is only meaningful to

a vendor-specific client application.
vendorName

A name for the vendor associated with the load-balancing algorithm.
proprietaryPropertyCount

The count of proprietary properties (less that or equal to eight) supported.
proprietaryProperties

A list of proprietary property name/value pairs.

Remarks
This structure is optional and allows a vendor to add up to 16 vendor-specific load-balance
algorithms to the load balance bit maps used in logical unit and plugin properties.
See MP_LOAD_BALANCE_TYPE
6.20 MP_LOGICAL_UNIT_NAME_TYPE

Constants
#define MP_LU_NAME_TYPE_UNKNOWN 0
#define MP_LU_NAME_TYPE_VPD83_TYPE1 1
Multipath Management API Working Draft

Version 1.1
30

#define MP_LU_NAME_TYPE_VPD83_TYPE2 2
#define MP_LU_NAME_TYPE_VPD83_TYPE3 3
#define MP_LU_NAME_TYPE_DEVICE_SPECIFIC 4

typedef MP_UINT32 MP_LOGICAL_UNIT_NAME_TYPE;

Definitions

MP_LOGICAL_UNIT_NAME_TYPE_UNKOWN
The interpretation of the name for the logical unit is unknown. Use of this value is
discouraged and should only be used if the name is derived from some other driver rather
than directly from a SCSI Inquiry command.

MP_LU_NAME_TYPE_VPD83_TYPE1l
The name is derived from SCSI Device ldentification VPD page (i.e., page 83h),
Association 0, Type 1.

MP_LU NAME_TYPE_VPD83 TYPE2
The name is derived from SCSI Device ldentification VPD page (i.e., page 83h),
Association 0, Type 2.

MP_LU_NAME_TYPE_VPD83_TYPES3
The name is derived from SCSI Device ldentification VPD page (i.e., page 83h),
Association 0, Type 3.

MP_LU_NAME_TYPE_DEVICE_SPECIFIC
The name is derived from a device product specific command.

Remarks

ISO/IEC 14776-453 (SPC-3) allows for several different representations of logical unit names.
This property is an enumerated type for commonly used formats.

6.21 MP_LIBRARY_PROPERTIES

Format
typedef struct _MP_LIBRARY_PROPERTIES
{
MP_UINT32 supportedMpVersion;
MP_WCHAR vendor[256];
MP_WCHAR implementationVersion[256];
MP_CHAR fileName[256];
MP_WCHAR buildTime[256];
} MP_LIBRARY_PROPERTIES;
Fields

supportedMpVersion
The version of the Multipath Management APl implemented by the library. The value
returned by a library for the API as described in this document is one.

vendor
A null terminated Unicode string containing the name of the vendor that created the binary
version of the library.

implementationVersion
A null terminated Unicode string containing the implementation version of the library from
the vendor specified in vendor.

fileName
A null terminated ASCII string ideally containing the path and file name of the library that
is filling in this structure.

Multipath Management API Working Draft
Version 1.1
31

If the path cannot be determined then this field will contain only the name (and extension
if applicable) of the file of the library. If this cannot be determined then this field shall be
an empty string.

buildTime
The time and date that the library was built.

6.22 MP_AUTOFAILBACK_SUPPORT

Constants

#define MP_AUTOFAILBACK_SUPPORT_NONE 0
#define MP_AUTOFAILBACK_SUPPORT_PLUGIN 1
#define MP_AUTOFAILBACK_SUPPORT_MPLU 2
#define MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU 3

typedef MP_UINT32 MP_AUTOFAILBACK_SUPPORT;

Definitions

MP_AUTOFAILBACK_SUPPORT_NONE
The implementation does not support auto-failback.
MP_AUTOFAILBACK_SUPPORT_PLUGIN
The implementation supports auto-failback properties and APIs across the entire plugin.
MP_AUTOFAILBACK_SUPPORT_MPLU
The implementation supports auto-failback properties and APIs for individual multipath
logical units.
MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU
The implementation supports auto-failback properties and APIs for plugins and individual
multipath logical units.

Remarks

Auto-failback is the capability of the implementation to discover that a path has reverted to a
usable state and to resume using the path. If the implementation supports auto-failback, then
it supports the MP_SetFailbackPollingRate API or shall assure MP_PLUGIN_PROPERTIES
failbackPollingRateMax is set to 0 (indicating polling is not performed or the rate is not
tunable).

6.23 MP_AUTOPROBING_SUPPORT

Constants

#define MP_AUTOPROBING_SUPPORT_NONE 0]
#define MP_AUTOPROBING_SUPPORT_PLUGIN 1
#define MP_AUTOPROBING_SUPPORT_MPLU 2
#define MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU 3

typedef MP_UINT32 MP_AUTOPROBING_SUPPORT;

Definitions

MP_AUTOPROBING_SUPPORT_NONE
The implementation does not support auto-probing.
MP_AUTOPROBING_SUPPORT_PLUGIN
The implementation supports auto-probing properties and APIs across the entire plugin.
MP_AUTOPROBING_SUPPORT_MPLU
The implementation supports auto-probing properties and APIs for individual multipath
logical units.
MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU

Multipath Management API Working Draft
Version 1.1
32

The implementation supports auto-probing properties and APIs for plugins and individual
multipath logical units.

Remarks

Auto-probing is the capability of the implementation to discover state changes in paths that
are not being used. Paths may not be used because of administrative weight or path override
configurations. If the implementation supports auto-probing, then it supports the
MP_SetProbingPollingRate API or shall assure MP_PLUGIN_PROPERTIES
probingPollingRateMax is set to 0 (indicating polling is not performed or the rate is not
tunable).

6.24 MP_PLUGIN_PROPERTIES

Format

typedef struct _MP_PLUGIN_PROPERTIES

{
MP_UINT32 supportedMpVersion;
MP_WCHAR vendor[256];
MP_WCHAR implementationVersion[256];
MP_CHAR fileName[256];
MP_WCHAR buildTime[256];
MP_WCHAR driverVendor[256];
MP_CHAR driverName[256];
MP_WCHAR driverVersion[256];
MP_UINT32 supportedLoadBalanceTypes;
MP_BOOL canSetTPGAccess;
MP_BOOL canOverridePaths;
MP_BOOL exposesPathDeviceFiles;
MP_CHAR deviceFileNamespace[256];
MP_BOOL onlySupportsSpecifiedProducts;
MP_UINT32 maximumWeight;
MP_AUTOFAILBACK_SUPPORT autoFailbackSupport;
MP_BOOL pluginAutoFailbackEnabled;
MP_UINT32 failbackPollingRateMax;
MP_UINT32 currentFailbackPollingRate;
MP_AUTOPROBING_SUPPORT autoProbingSupport;
MP_BOOL pluginAutoProbingEnabled;
MP_UINT32 probingPollingRateMax;
MP_UINT32 currentProbingPollingRate;
MP_LOAD_BALANCE_TYPE defaultloadBalanceType
MP_UINT32 proprietaryPropertyCount;
MP_PROPRIETARY_PROPERTY proprietaryProperties[8];

} MP_PLUGIN_PROPERTIES;

Fields

supportedMpVersion
The version of the Multipath Management API implemented by a plugin. The value
returned by a library for the APl as described in this document is one.

vendor
A null terminated Unicode string containing the name of the vendor that created the binary
version of the plugin.

implementationVersion
A null terminated Unicode string containing the implementation version of the plugin from
the vendor specified in vendor.

fileName

Multipath Management API Working Draft
Version 1.1
33

A null terminated ASCII string ideally containing the path and file name of the plugin that
is filling in this structure.
If the path cannot be determined then this field will contain only the name (and extension
if applicable) of the file of the plugin. If this cannot be determined then this field will be an
empty string.
buildTime
The time and date that the plugin that is specified by this structure was built.
driverVendor
A null terminated Unicode string containing the name of the multipath driver vendor
associated with this plugin.
driverName
A null terminated ASCII string containing the name of the multipath driver associated with
the plugin.
driverVersion
A null terminated Unicode string containing the version number of the multipath driver.
supportedLoadBalanceTypes
A set of flags representing the load balance types (MP_LOAD_ BALANCE_TYPES)
supported by the plugin/driver as a plugin-wide property.
canSetTPGAccess
A boolean indicating whether the implementation supports activating target port groups.
canOverridePaths
A boolean indicating whether the implementations supports overriding paths. Setting this
to true indicates MP_SetOverridePath and MP_CancelOverridePath are supported.
exposesPathDeviceFiles
A boolean indicating whether the implementation exposes (or leaves exposed) device files
for the individual paths encapsulated by the multipath device file. This is typically true for
MP drivers that sit near the top of the driver stack.
deviceFileNamespace
A string representing the primary file names the driver uses for multipath logical units, if
those filenames do not match the names in A.1. The name is expressing in the following
format:
“*' represents one or more alphanumeric characters
‘#' represents a string of consecutive digits (e.g. '5’, ‘123")
‘%’ represents a string of hexadecimal digits (e.g. ‘6101a45’)
‘\' is an escape character for literal presentation of *, #, or % (e.g. ‘lU\#5’)
any other character is interpreted literally
For example, “/dev/vx/dmp/*”
If the multipath driver creates multipath logical unit device file names in the same manner
as OS device files, then this property should be left null.
onlySupportsSpecifiedProducts
A boolean indicating whether the driver limits multipath capabilities to certain device
types. If true, then the driver only provides multipath support to devices exposed through
MP_DEVICE_PRODUCT_PROPERTIES instances. If false, then the driver supports any
device that provides standard SCSI logical unit identifiers.
maximumWeight
Describes the range of administer settable path weights supported by the driver. A driver
with no path preference capabilities should set this property to zero. A driver with the
ability to enable/disable paths should set this property to 1. Drivers with more weight
settings can set the property appropriately.
autoFailbackSupport
An enumerated type indicating whether the implementation supports auto-failback at the
plugin level, the multipath logical unit level, both levels or whether auto-failback is
unsupported.
pluginAutoFailbackEnabled
A boolean indicating that plugin-wide auto-failback is enabled. This property is undefined
if autoFailbackSupport is MP_AUTOFAILBACK_SUPPORT_NONE or
MP_AUTOFAILBACK_SUPPORT_MPLU.

Multipath Management API Working Draft

Version 1.1
34

failbackPollingRateMax
The maximum plugin-wide polling rate (in seconds) for auto-failback supported by the
driver. Undefined if autofailbackSupport is MP_AUTOFAILBACK_SUPPORT_NONE or
MP_AUTOFAILBACK_SUPPORT_MPLU. If the plugin/driver supports auto-failback
without polling or does not provide a way to set the polling rate, then this shall be set to
zero (0).This value is set by the plugin and cannot be modified by users.
currentFailbackPollingRate
The current plugin-wide auto-failback polling rate (in seconds). Undefined if
autofailbackSupport is MP_AUTOFAILBACK_SUPPORT_NONE or
MP_AUTOFAILBACK_SUPPORT_MPLU. Cannot be more that failbackPollingRateMax.
autoProbingSupport
An enumerated type indicating whether the implementation supports auto-probing at the
plugin level, the multipath logical unit level, both levels or whether auto-probing is
unsupported.
pluginAutoProbingEnabled
A boolean indicating that plugin-wide auto-probing is enabled. This property is undefined
if autoProbingSupport is MP_AUTOPROBING_SUPPORT_NONE or
MP_AUTOPROBING_SUPPORT_MPLU.
probingPollingRateMax
The maximum plugin-wide polling rate (in seconds) for auto-probing supported by the
driver. Undefined if autoProbingSupport is MP_AUTOPROBING_SUPPORT_NONE or
MP_AUTOPROBING_SUPPORT_MPLU. If the plugin/driver supports auto-probing without
polling or does not provide a way to set the probing polling rate, then this shall be set to
zero (0). This value is set by the plugin and cannot be modified by users.
currentProbingPollingRate
The current plugin-wide auto-probing polling rate (in seconds).Undefined if
autoProbingSupport is MP_AUTOPROBING_SUPPORT_NONE or
MP_AUTOPROBING_SUPPORT_MPLU. Cannot be more that probingPollingRateMax.
defaultLoadBalanceType
The load balance type that will be used by the driver for devices (without a corresponding
MP_DEVICE_PRODUCT_PROPERTIES instance) unless overridden by the administrator.
Any logical unit with vendor, product and revision properties matching a
MP_DEVICE_PRODUCT_PROPERTIES instance will default to a device-specific load
balance type.
proprietaryPropertyCount
The count of proprietary properties (less that or equal to eight) supported.
proprietaryProperties
A list of proprietary property name/value pairs.

6.25 MP_SUPPORTED_DEVICE_PRODUCT_CATEGORY

Constants

#define MP_DEVICE_PRODUCT_SPECIFIC_ONLY 0

#define MP_DEVICE_PRODUCT_SPECIFIC_SYMMETRIC_EXPLICIT 1<<0
#define MP_DEVICE_PRODUCT_SPECIFIC_SYMMETRIC_ IMPLICIT 1 << 1
#define MP_DEVICE_PRODUCT_SPECIFIC_ASYMMETRIC_EXPLICIT 1 << 2
#define MP_DEVICE_PRODUCT_SPECIFIC_ASYMMETRIC_IMPLICIT 1 << 3
#define MP_DEVICE_PRODUCT_SCSI1_TPGS SYMMETRIC EXPLICIT 1 << 4
#define MP_DEVICE_PRODUCT_SCSI_TPGS_SYMMETRIC_IMPLICIT 1 << 5
#define MP_DEVICE_PRODUCT_SCSI1_TPGS_ASYMMETRIC_EXMPLICIT 1 << 6
#define MP_DEVICE_PRODUCT_SCSI_TPGS_ASYMMETRIC IMPLICIT 1 << 7

typedef MP_UINT32 MP_SUPPORTED_DEVICE_PRODUCT_CATEGORY

Definitions

MP_DEVICE_PRODUCT_SPECIFIC_ONLY
The plugin supports a specific device product.

Multipath Management API Working Draft
Version 1.1
35

MP_DEVICE PRODUCT SPECIFIC SYMMETRIC EXPLICIT
The plugin supports specific symmetric device with explicit state change support.
MP_DEVICE PRODUCT SPECIFIC SYMMETRIC IMPLICIT
The plugin supports specific symmetric device with implicit state change support.
MP DEVICE PRODUCT SPECIFIC ASYMMETRIC EXPLICIT
The plugin supports specific asymmetric device with explicit state change support.
MP DEVICE PRODUCT_SPECIFIC_ASYMMETRIC_IMPLICIT
The plugin supports specific asymmetric device with implicit state change support
MP_DEVICE_PRODUCT_SCSI_TPGS_SYMMETRIC_EXPLICIT
The plugin supports T10 TPGS compliant symmetric device with explicit state change
support.
MP_DEVICE_PRODUCT_SCSI_TPGS_SYMMETRIC_IMPLICIT
The plugin support T10 TPGS compliant symmetric device with implicit state change
support.
MP_DEVICE_PRODUCT_SCSI_TPGS_ASYMMETRIC_EXPLICIT
The plugin supports T10 TPGS compliant asymmetric device with explicit state change
support.
MP_DEVICE_PRODUCT_SCSI_TPGS_ASYMMETRIC_IMPLICIT
The plugin support T10 TPGS compliant asymmetric device with implicit state change
support.

Remarks

The categories defined in this section serve to complement the information of
MP_DEVICE_PRODUCT_PROPERTIES instances when the onlySupportsSpecifiedProducts
field is set to true. A multipath support may provide a vendor specific way to manage
supported device product when MP_DEVICE_PRODUCT_SPECIFIC_* categories are
supported.

See Also
MP_GetSupportedDeviceProductCategory

6.26 MP_DEVICE_PRODUCT_PROPERTIES

Format
typedef struct _MP_DEVICE_PRODUCT_PROPERTIES
{
MP_CHAR vendor[8];
MP_CHAR product[16];
MP_CHAR revision[4]
MP_UINT32 supportedLoadBalanceTypes;
} MP_DEVICE_PRODUCT_PROPERTIES;
Fields
vendor

Eight bytes of ASCII data identifying the vendor of the device product. Corresponds to the
VENDOR IDENTIFICATION field in the SCSI INQUIRY response.

product
Sixteen bytes of ASCII data. Corresponds to the PRODUCT IDENTIFICATION field in the
SCSI INQUIRY response. This field can be set with null in all bytes if all devices with the
same vendor and revision fields are treated identically by the plugin.

revision
Four bytes of ASCII data. Corresponds to the PRODUCT REVISION LEVEL field in the
SCSI INQUIRY response. This field can be set with null in all bytes if all devices with the
same vendor and product fields are treated identically by the plugin.

Multipath Management API Working Draft
Version 1.1
36

supportedLoadBalanceTypes
A set of flags representing the load balance types (MP_LOAD_BALANCE_TYPES)
supported by the device product instance.

Remarks
See the remarks under MP_LOAD_BALANCE_TYPE (see 6.17).

6.27 MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES

Format

typedef struct _MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES

{
MP_CHAR vendor[8];
MP_CHAR product[16];
MP_CHAR revision[4];
MP_CHAR name[256] ;
MP_LOGICAL_UNIT_NAME_TYPE nameType;
MP_CHAR deviceFileName[256];
MP_BOOL asymmetric;
MP_OID overridePath;
MP_LOAD_BALANCE_TYPE currentLoadBalanceType;
MP_UINT32 logicalUnitGrouplD;
MP_XBOOL autoFai lbackEnabled;
MP_UINT32 failbackPollingRateMax;
MP_UINT32 currentFailbackPollingRate;
MP_XBOOL autoProbingEnabled;
MP_UINT32 probingPollingRateMax;
MP_UINT32 currentProbingPollingRate
MP_UINT32 proprietaryPropertyCount;
MP_PROPRIETARY_PROPERTY proprietaryProperties|[8];

} MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES;

Fields
vendor

Eight bytes of ASCII data identifying the vendor of the device product. Corresponds to the
VENDOR IDENTIFICATION field in the SCSI INQUIRY response.

product
Sixteen bytes of ASCII data. Corresponds to the PRODUCT IDENTIFICATION field in the
SCSI INQUIRY response. This field can be set with null in byte O if all devices with the
same vendor field are treated identically by the plugin.

revision
Four bytes of ASCII data. Corresponds to the PRODUCT REVISION LEVEL from the
SCSI standard inquiry response. This field can be set with null in byte 0 if all devices with
the same vendor and product fields are treated identically by the plugin.

name
The name of the device derived from SCSI Inquiry data If the name is derived from SCSI
Device Identification VPD page (i.e., page 83h) and the CODE SET field is 1 (binary), it is
translated to hexadecimal-encoded binary.

nameType
The source of the name property.

deviceFileName
The name of the device file representing the consolidated multi-path device. This name
shall comply with A.3.

asymmetric
A boolean indicating whether the underlying logical unit has asymmetric access.

overridePath

Multipath Management API Working Draft
Version 1.1
37

The ID of a path object only set when an administrator explicitly sets a path.

currentloadBalanceType
The current load balancing preference assigned to this logical unit.

logicalUnitGroupID
The identifier shared by all logical units in a target device that always shared a common
access state. If an API request (MP_SetTPGAccess, MP_EnablePath, MP_DisablePath)
forces 1/Os through a Target Port Group with a different access state, then the target
device will force all logical units with a common logicalUnitGroupID to the same access
state change.
This property shall correspond to the SCSI logical unit group identifier in a SCSI Device
Identification VPD page (i.e., page 83h) response. If the target device does not support
this SCSI identifier and the plugin understands a proprietary technique for determining
groups of logical units that share access state, then the plugin/driver shall generate a
value that acts equivalently to the SCSI defined logical unit group behavior. If the target
does not support the SCSI logical unit group identifier and the plugin knows the target has
symmetric access through all ports, then the plugin shall set this property to zero. If the
target does not support the SCSI page 83h logical unit group identifier and the plugin
does not have proprietary knowledge of logical unit groups, then this shall be set to
FFFFFFFFh.

autoFailbackEnabled
MP_TRUE if the administrator has requested that auto-failback be enabled for this

multipath logical unit. If the plugin's autoFailbackSupport is
MP_AUTOFAILBACK_SUPPORT_PLUGINANDMPLU, MP_UNKNOWN is valid and
indicates that multipath logical unit has auto-failback enabled if

pluginAutoFailbackEnabled is true. Undefined if the plugin's autoFailbackSupport property
is MP_AUTOFAILBACK_SUPPORT_NONE or MP_AUTOFAILBACK_SUPPORT_PLUGIN.
failbackPollingRateMax
The maximum polling rate (in seconds) supported by the driver. Zero (0) indicates the
driver either does not poll for auto-failback or has not provided an interface to set the
polling rate for multipath logical wunits. If this property and the plugin's
failbackPollingRateMax are non-zero, this value has precedence for the associate logical
unit. Undefined if the plugin's autoFailbackSupport property is
MP_AUTOFAILBACK_SUPPORT_NONE or MP_AUTOFAILBACK_SUPPORT_PLUGIN.
currentFailbackPollingRate
The current polling rate (in seconds) for auto-failback. This cannot exceed
failbackPollingRateMax. If this property and the plugin's currentFailbackPollingRate are
non-zero, this value has precedence for the associate logical unit. Undefined if the
plugin's autoFailbackSupport property is MP_AUTOFAILBACK SUPPORT_NONE or
MP_AUTOFAILBACK_SUPPORT_PLUGIN.
autofProbingEnabled
MP_TRUE if the administrator has requested that auto-probing be enabled for this

multipath logical unit. If the plugin's autoProbingSupport is
MP_AUTOPROBING_SUPPORT_PLUGINANDMPLU, MP_UNKNOWN is valid and
indicates that multipath logical unit has auto-Probing enabled if

pluginAutoProbingEnabled is true. Undefined if the plugin's autoProbingSupport property
is MP_AUTOPROBING_SUPPORT_NONE or MP_AUTOPROBING_SUPPORT_PLUGIN.
probingPollingRateMax
The maximum polling rate (in seconds) supported by the driver. Zero (0) indicates the
driver either does not poll for auto-Probing or has not provided an interface to set the
polling rate for multipath logical wunits. If this property and the plugin's
probingPollingRateMax are non-zero, this value has precedence for the associate logical
unit. Undefined if the plugin's autoProbingSupport property is
MP_AUTOPROBING_SUPPORT_NONE or MP_AUTOPROBING_SUPPORT_PLUGIN.
currentProbingPollingRate
The current polling rate (in seconds) for auto-probing. This cannot exceed
probingPollingRateMax. If this property and the plugin's currentProbingPollingRate are
non-zero, this value has precedence for the associate logical unit. Undefined if the

Multipath Management API Working Draft
Version 1.1
38

plugin's autoProbingSupport property is MP_AUTOPROBING_SUPPORT_NONE or
MP_AUTOPROBING_SUPPORT_PLUGIN.
proprietaryPropertyCount
The count of proprietary properties (less that or equal to eight) supported.
proprietaryProperties
A list of proprietary property name/value pairs.

Remarks

MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES represents an aggregation of paths
presented as a virtual device to applications (or drivers higher in the stack). Each
MP_PATH_LOGICAL_UNIT_PROPERTIES has a set of associated paths
(MP_PATH_LOGICAL_UNIT_PROPERTIES).

6.28 MP_STATISTICS_UNSUPPORTED
Constants

#define MP_STATISTICS_UNSUPPORTED OxFFFFFFFFFFFFFFFF
Definitions

Constant to indicate that a statistics counter or timer field is not supported.
See Also

MP_PATH_LOGICAL_UNIT_STATISTICS

6.29 MP_TIME_RESOLUTION_UNIT

Constants

#define MP_SEC

#define MP_MILLISEC
#define MP_MICROSEC
#define MP_NANOSEC
#define MP_PICOSEC

arwWNPE

typedef MP_UINT32 MP_TIME_RESOLUTION_UNIT
Definitions

MP_SEC

The unit of the reported time information is in seconds.
MP_MILLISEC

The unit of the reported time information is in milliseconds.
MP_MICROSEC

The unit of the reported time information is in microseconds.
MP_NANOSEC

The unit of the reported time information is in nanoseconds.
MP_PICOSEC

The unit of the reported time information is in picoseconds.

See Also

MP_GetPathLogicalUnitStatistics and MP_GetPathLogicalUnitDistributedStatistics

Multipath Management API Working Draft
Version 1.1
39

6.30 MP_STATISTICS_DATA_TYPE

Constants

#define MP_STATISTICS_DATA_TYPE_I0_WAIT_TIME

#define MP_STATISTICS_DATA_TYPE_READ WAIT_TIME
#define MP_STATISTICS_DATA_TYPE_WRITE_WAIT_TIME
#define MP_STATISTICS_DATA TYPE_I10_RESPONSE_TIME
#define MP_STATISTICS_DATA_TYPE_READ RESPONSE_TIME
#define MP_STATISTICS_DATA_TYPE_WRITE_RESPONSE_TIME

#define MP_STATISTICS DATA_TYPE_BYTES
#define MP_STATISTICS DATA_TYPE_READ BYTES
#define MP_STATISTICS DATA_TYPE WRITE_BYTES
#define MP_STATISTICS_DATA_TYPE_DATA_BYTES

#define MP_STATISTICS DATA_TYPE DATA_READ_BYTES
#define MP_STATISTICS_DATA_TYPE DATA_WRITE_BYTES

#define MP_STATISTICS_DATA_TYPE_CONTROL_BYTES

#define MP_STATISTICS_DATA_TYPE CONTROL_READ_BYTES
#define MP_STATISTICS DATA TYPE_CONTROL_WRITE_BYTES

#define MP_STATISTICS_DATA_TYPE_PROPRIETARY1
#define MP_STATISTICS_DATA_TYPE_PROPRIETARY2
// additional proprietary types

typedef MP_UINT32 MP_STATISTICS_DATA_TYPE

Definitions

MP_STATISTICS_DATA_TYPE_IO_WAIT_TIME

The distributed statistics data bucket contains I/0O wait time data.

MP_STATISTICS_DATA_TYPE_READ_WAIT_TIME

1<<0
1<<1
1<<2
1<<3
1<<4
1<<5
1<<6
1<<7
1<<8
1<<9
1<<10
1<<11
1<<12
1<<13
1<<14
1<<23
1<<24

The distributed statistics data bucket contains read operation wait time data.

MP_STATISTICS_DATA_TYPE_WRITE_WAIT_TIME

The distributed statistics data bucket contains write operation wait time data.

MP_STATISTICS_DATA_TYPE_IO_RESPONSE_TIME

The distributed statistics data bucket contains I/O response time data.

MP_STATISTICS_DATA_TYPE_READ_RESPONSE_TIME

The distributed statistics data bucket contains read operation response time data.

MP_STATISTICS_DATA_TYPE_WRITE_RESPONSE_TIME

The distributed statistics data bucket contains write operation response time data.

MP_STATISTICS_DATA_TYPE_BYTES

The distributed statistics data bucket contains number of bytes read or written for both

data and control related operations.
MP_STATISTICS_DATA_TYPE_READ_BYTES

The distributed statistics data bucket contains number of bytes read for both data and

control related operations.
MP_STATISTICS _DATA TYPE_WRITE_BYTES

The distributed statistics data bucket contains number of bytes written for both data and

control related operations.
MP_STATISTICS_DATA_TYPE_DATA_BYTES

The distributed statistics data bucket contains number of data bytes read or written.

MP_STATISTICS_DATA_TYPE_DATA_READ BYTES

The distributed statistics data bucket contains number of data bytes read.

MP_STATISTICS_DATA_TYPE_DATA_WRITE_BYTES

The distributed statistics data bucket contains number of data bytes written.

MP_STATISTICS_DATA_TYPE_CONTROL_BYTES

Multipath Management API Working Draft

Version 1.1

40

The distributed statistics data bucket contains number of control data bytes read or
written.
MP_STATISTICS_DATA_TYPE_CONTROL_READ_BYTES
The distributed statistics data bucket contains number of control data bytes read.
MP_STATISTICS_DATA _TYPE_CONTROL_WRITE_BYTES
The distributed statistics data bucket contains number of control data bytes written.
MP_STATISTICS_DATA_TYPE_TYPE_PROPRIETARYX
The data type of distributed statistics that the bucket contains is proprietary. This
bit mask supports up to sixteen proprietary types.
See Also

MP_GetPathLogicalUnitDistributedStatistics

Remarks

The statistics data type is used within the context of
MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS.

6.31 MP_STATISTICS_BUCKET

Format
typedef struct _MP_STATISTICS_ BUCKET
MP_UINT64 boundary;
MP_UINT32 count;
} MP_STATISTICS_BUCKET
Fields
boundary:
Sets the inclusive upper limit of a range relative to the previous bucket. The lower
limit for first bucket is 0.
count:
Number of occurrences within the associated range.
See Also
MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS
Remarks

The value of the boundary field represents either time or a counter depending on the
type of statistics data that the bucket contains.

6.32 MP_DISTRIBUTED_STATISTICS_MODE
Constant

#define MP_MODE_DEFAULT 0
typedef MP_UINT32 MP_DISTRIBUTED_STATISTICS_MODE
Definition

MP_MODE_DEFAULT:
Indicates that the boundary value of a statistics bucket sets the upper limit of a
range as described in MP_STATISTICS_BUCKET.
See Also

MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS

Multipath Management API Working Draft
Version 1.1
41

Remarks

A value other than MP_MODE_DEFAULT may provide a plugin specific way to
interpret the boundary value of MP_STATISTICS _BUCKET. This standard does not
define a plugin specific mode.

6.33 MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS

Format

Fields

See Also

typedef struct _MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS

MP_UINT64 snapTime;
MP_TIME_RESOLUTION_UNIT timeUnit;
MP_DISTRIBUTED_STATISTICS_MODE mode;
MP_UINT32 bucketCount;
MP_STATISTICS_BUCKET bucket[1];

} MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS

snapTime:
The elapsed period between the time the statistics counters were reset and the
time statistics counters are taken. It can be used to calculate the delta between
two statistics data over a period of time.

timeUnit:
The unit of time value used for the snapTime field and for the boundary field in
MP_STATISTICS_BUCKET when the associated bucket represents time based
statistics data.

mode:
Indicates how the boundary field of the bucket should to be used to interpret
distributed statistics data in the buckets.

bucketCount:
Total number of instances of MP_STATISTICS_ BUCKET.

bucket:
Array of buckets. It is expanded per the bucketCount.

MP_GetPathLogicalUnitDistributedStatistics

6.34 MP_PATH_LOGICAL_UNIT_STATISTICS

Format

typedef struct _ MP_PATH_LOGICAL_UNIT_STATISTICS

MP_UINT64 snapTime;
MP_UINT64 ioOps;
MP_UINT64 readOps;
MP_UINT64 writeOps;
MP_UINT64 dataOps;
MP_UINT64 dataReadOps;
MP_UINT64 dataWriteOps;
MP_UINT64 controlOps;

Multipath Management API Working Draft

Version 1.1
42

MP_UINT64 controlReadOps;
MP_UINT64 controlWriteOps;
MP_UINT64 bytes;

MP_UINT64 readBytes;
MP_UINT64 writeBytes;
MP_UINT64 dataBytes;
MP_UINT64 dataReadBytes;
MP_UINT64 dataWriteBytes;
MP_UINT64 controlBytes;
MP_UINT64 controlReadBytes;
MP_UINT64 controlWriteBytes;
MP_UINT64 ioResponseTime;
MP_UINT64 ReadResponseTime;
MP_UINT64 WriteResponseTime;
MP_UINT64 ioWaitTime;
MP_UINT64 readWaitTime;
MP_UINT64 wrieWaitTime;
MP_TIME_RESOLUTION_UNIT timeUnit;

} MP_PATH_LOGICAL_UNIT_STATISTICS;

Fields
snapTime:
The elapsed period between the time the statistics counters were reset and the
time statistics counters are taken. It can be used to calculate the delta between
two statistics data over a period of time.
ioOps:
Number of I/O operations since the counter reset.
readOps:
Number of read operations since the counter was reset.
writeOps:
Number of write operations since the counter was reset.
dataOps:
Number of data I/O operations.
dataReadOps:
Number of data read operations since the counter was reset.
dataWriteOps:
Number of data write operations since the counter was reset.
controlOps:
Number of control 1/O operations since the counter was reset.
controlReadOps:
Number of control read operations since the counter was reset.
controlWriteOps:
Number of control write operations since the conter was reset.
bytes:
Total number of bytes read or written since the counter was reset.
readBytes:
Number of bytes read since the counter was reset
writeBytes:
Number of bytes written since the counter was reset.
dataBytes:
Total number of data bytes read or written since the counter was reset.
dataReadBytes:
Number of data bytes read since the counter was reset.
dataWriteBytes:
Multipath Management API Working Draft

Version 1.1

43

Remarks

Number of data bytes written since the counter was reset.
controlBytes:
Total number of control bytes read or written since the counter was reset.
controlReadBytes:
Number of control bytes read since the counter was reset.
controlWriteBytes:
Number of control bytes written since the counter was reset.
ioResponseTime:
Cumulative time that 1/O operations are actively serviced since the associated
counters was reset.
readResponseTime:
Cumulative time that read operations are actively serviced sicne the associated
counters was reset.
writeResponseTime:
Cumulative time that write operations are actively serviced since the associated
coutners was reset.
ioWaitTime:
Cumulative time that I/O operation requests were waiting to be serviced since the
associated counters were reset.
readWaitTime:
Cumulative time that read operation requests were waiting to be serviced since
the associated coutners were reset.
writeWaitTime:
Cumulative time that write operaton requests were waiting to be serviced since the
associated counters were reset.
timeUnit:
the time unit used for time related counters including the snapTime field.

If the counter reset occurs between two subsequent calls the timers and counters of
MP_PATH_LOGICAL_UNIT_STATISTICS structure including the value of the
snapTime fieldmay decrease over the calls.

The value of the fields is wrapped around when it reaches to maximally allowed value
(7TFFFFFFFFFFFFFFF->00h). Therefore, the value of a specific field may decrease
over the calls. The value FFFFFFFFFFFFFFFFh is reserved as the indication of an
unsupported field within the structure.

The sum of the response time and wait time represents the total duration of 1/O
operations between the time that they were requested to the associated multipathing
support and the time that the multipath logical unit has completed them.

6.35 MP_PATH_LOGICAL_UNIT_PROPERTIES

Format
typedef struct _MP_PATH_LOGICAL_UNIT_PROPERTIES
MP_UINT32 weight;
MP_PATH_STATE pathState;
MP_BOOL disabled;
MP_OID initiatorPortOid;
MP_OID targetPortOid;
Multipath Management API Working Draft
Version 1.1

44

MP_OID logicalUnitOid;

MP_UINT64 logicalUnitNumber;
MP_CHAR deviceFileName[256];
MP_UINT32 busNumber;
MP_UINT32 portNumber;
} MP_PATH_LOGICAL_UNIT_PROPERTIES;
Fields
weight

The administrator-assigned weight of the path. By default (unless specified by the
administrator), all paths are assigned the maximum weight supported by the driver
(MP_PLUGIN_PROPERTIES.maximumWeight).
pathState
The path state.
disabled
A boolean indicating that the path is disabled explicitly by the MP_DisablePath API or
path weight configuration or implicitly due to path failures.
initiatorPortOid
The object ID of the initiator port associated with the path.
targetPortOid
The object ID of the target port associated with the path.
logicalUnitOid
The object ID of the multipath logical unit associated with the path logical unit.
logicalUnitNumber;
The SCSI logical unit number as a SCSI architecture model (SAM) eight-byte value. Note
that in typical cases, the logical unit number.
deviceFileName
The name of the OS device file representing this path, if one exists.
busNumber
On Windows, the bus number associated with the initiator port. Undefined for other
platforms.
portNumber
On Windows, the port number associated with the initiator port. Undefined for other
platforms.

Remarks

As used throughout this standard, the term “path” applies to a combination of a target port,
initiator port and logical unit. Unlike other object/structures defined by this standard, a path
does not represent a particular object from the real world, but represents an association
between real-world objects. Treating the path as a data-structure allows us to assign it an
object ID and treat it like other API objects.

6.36 MP_INITIATOR_PORT_PROPERTIES

Format
typedef struct _MP_INITIATOR_PORT_PROPERTIES
MP_CHAR portiD[256];
MP_PORT_TRANSPORT_TYPE portType;
MP_CHAR osDeviceFile[256];
MP_WCHAR osFriendlyName[256];
} MP_INITIATOR_PORT_PROPERTIES
Fields
portiD
Multipath Management API Working Draft

Version 1.1
45

The name of the port. This should be a worldwide unique name defined per transport-
specific standards; such as a FC port WWN.

portType
The transport type of the port.
osDeviceFile

The OS device file name representing the port on the system. See A.2.

osFriendlyName

An administrator-friendly name for an initiator port. A name that an administrator would

likely use to refer to the port, if known.

Remarks

In order to assure
implementations.

interoperability,

portID shall

be formatted consistently across

MP_PORT_TRANSPORT_TYPE_MPNODE

A string representing a platform-specific
special device file as described in A.2.

MP_PORT_TRANSPORT_TYPE_FC

A PortWWN formatted as 16 unseparated
upper case hex digits (e.g.
'21000020372D3C73")

MP_PORT_TRANSPORT_TYPE_SPI

A host/platform name for the port. This is not
an interoperable solution, but SPI ports
typically lack names.

MP_PORT_TRANSPORT_TYPE_ISCSI

The port name is a string and SHALL be an
iISCSI name in “ign”, “eui”, or “naa” format as

described in the iSCSI RFCs.

MP_PORT_TRANSPORT_TYPE_IFB

InfiniBand Global Identifier formatted as 32
unseparated upper case hex digits.

MP_PORT_TRANSPORT_TYPE_SAS

A SAS Address formatted as 16 unseparated
upper-case hex digit. An additional
information such as SAS phy identifier for a
narrow port or phy bit mask for a wide port
may be concatenated when an SAS Address
alone is known to be not world wide unique.
(e.g. 5010001526C41700.1 where last digit 1
represents a phy identifier or
5010001526C41700.FO where last digits FO
represent bit mask for a 8 phy wide port,
indicating phy identifier 4~7 are assigned to
the associated port.)

MP_PORT_TRANSPORT_TYPE_FCOE

An assigned PortWWN formatted same as FC
transport type port PortID.

6.37 MP_TARGET_PORT_PROPERTIES

Format
typedef struct _MP_TARGET_PORT_PROPERTIES
MP_CHAR portlD[256];
MP_UINT32 relativePortlID
} MP_TARGET_PORT_PROPERTIES
Fields
portiD

The name of the port. This should be a worldwide unique name defined in transport-
specific standards; such as a FC port WWN.

relativePortID

Multipath Management API

Working Draft

Version 1.1

46

An integer identifier for the target port. This corresponds to the relative target port
identifier field in a SCSI Device ldentification Management-Network-Addresses VPD page
(l.e., VPD page 83h, see ISO/IEC 14776-453 (SPC-3)) response, type 4h identifier. Note
that this value is constrained to 16 bits in ISO/IEC 14776-453 (SPC-3) and that O is
reserved. If the target device does not support this interface, this property shall be
synthesized by the plugin — set this to 1 for port A, 2 for port B, etc.

Remarks

See the remarks above for MP_INITIATOR_PORT_PROPERTIES (see 6.36).

6.38 MP_TARGET_PORT_GROUP_PROPERTIES

Format

Fields

typedef struct _MP_TARGET_PORT_GROUP_PROPERTIES

{
MP_ACCESS_STATE_TYPE accessState;
MP_BOOL explicitFailover;
MP_BOOL supportsLuAssignment;
MP_BOOL preferredLuPath;
MP_UINT32 tpglD

} MP_TARGET_PORT_GROUP_PROPERTIES;

accessState

The access state as defined in ISO/IEC 14776-453 (SPC-3).

explicitFailover
Set to true if the target device supports an explicit command to set target port group
access state (such as the SCSI SET TARGET PORT GROUPS command)

supportsLuAssignment
A boolean indicating whether the device supports assigning logical units to target port
groups. This capability is not based on a standard, but some devices provide this to allow
an administrator to optimize throughput by selecting which ports should be used to access
specific logical units.

preferredLuPath
A boolean to identify the preferred path to the associated logical units (PREF bit as
described in ISO/IEC 14776-453 (SPC-3)) or a vendor-specific interface.

tpgld
An integer identifier for the target port group. This corresponds to the TARGET PORT
GROUP field in the REPORT TARGET PORT GROUPS response and the TARGET PORT
GROUP field in a SCSI Device Identification VPD page (i.e., page 83h) response, type 5h
identifier.

6.39 MP_TPG_STATE_PAIR

Format
typedef struct _MP_TPG_STATE_PAIR
MP_OID tpgOid;
MP_ACCESS_STATE_TYPE desiredState;
} MP_TPG_STATE_PAIR;
Fields
tpgOid
The object ID of a target port group instance.
state
The desired state of the target port group.
Multipath Management API Working Draft
Version 1.1

47

Remarks
This structure is mandatory if the plugin supports the MP_SetTPGAccess method.

7 APIs

7.1 APl overview
APIs to return properties of an object

Many of the APIs return properties of objects. These APIs have names Ilike
Puget<object-type>Properties, for example, MP_GetTargetPortProperties.

APIs that associate object instances

Some APIs return object IDs of objects related to another object. For example,
MP_GetTargetPortOIDList returns a list of IDs of target port objects that comprise a Target Port
Group.

APIs that perform multipath tasks

Includes MP_AssignLogicalUnitToTPG, MP_CancelOverridePath, MP_DisableAutoFailback,
MP_DisableAutoProbing, MP_DisablePath, MP_EnableAutoFailback, MP_EnableAutoProbing,
MP_EnablePath, MP_SetLogicalUnitLoadBalanceType, MP_SetOverridePath,
MP_SetPathWeight, MP_SetPluginLoadBalanceType, MP_SetPollingRate and
MP_SetTPGAccess.

Convenience methods

These APIs are not related to multipathing, but provide common programming tasks for clients —
MP_CompareOids, MP_FreeOidList, MP_GetAssociatedPluginOid, MP_GetObjectType.

APIs related to installation
MP_DeregisterPlugin and MP_RegisterPlugin
APIs related to events

MP_DeregisterForObjectPropertyChanges, MP_DeregisterForVisibilityChanges,
MP_RegisterForObjectPropertyChanges, MP_RegisterForVisibilityChanges,

Multipath Management API Working Draft
Version 1.1
48

Typical discovery scenario

A typical client task starts by discovering a subset of the classes by making a sequence of API
calls. Once this subset is discovered, the client may display the results or issue another API call
to make a change requested by the user. The general discovery pattern in this API is to use an
association API to get a list of associated object IDs, then use a properties APl on each object ID
to get the details.

The diagram below helps a developer understand which API calls are needed for discovery. The
dashed lines include the function name that a client will use to determine which other objects (the
arrow end of the line) are associated to a given object (the line-end without an arrow).

MP Library
of
£ A
@ = o Initiator Port . Path *_GetAssocial_ted El. Target Port
- Getinitiai=_--¥ Logical Unit _ PathOIDList
v et T , PortiD
MBI’ S rern ' GetAssociated
Y T PathOidList T # ; A
&% % 18 s
] N o
i 2.9, Sy gl L &
.9 AT B 8y B3
- AN % S o8 25
yg by ¥y Rl c g £0
+ \.. % Pt ~g B
i ProprietaryLoad - | |
BalanceTypes ' H
., w v s
Y : LV Target Port Group
Device Product = 4 Multipath -
VendorlD . Logical Unit . oe-oeeeoeeeno-- GetAssociated TPGOIdList ---------=---===="% AccessState
ProductID
e GetMPLUOIALIStFrOMTPG w-s=rmrrsrs=smmrere-mo-

Figure 5 — APIs relative to the objects from Figure 1

Discovery of a model subset typically starts at the library (upper left), finds associated plugins
(follow the dashed line) by calling GetPluginOidList, then uses GetPluginProperties to get plugin
details. After that, the client has choices which other classes to navigate, depending on the
particular task. If the task requires a list of initiator ports, follow the dashed line to initiator ports
(call GetlnitiatorPortOidList) and get the details using GetlnitiatorPortProperties. From initiator
ports, GetAssociatedPathOidList returns a list of paths. The same leapfrog approach can be used
to determine which API functions are useful in discovering various subsets of the model.

7.2 MP_AddDeviceProductToPlugin

Synopsis
Add a device product to a plugin supported device product list. The plugin will assign an OID
for the device product.

Prototype

MP_STATUS MP_AddDeviceProductToPlugin(

/* in */ MP_OID pluginOid,

/* in */ MP_DEVICE_PRODUCT_PROPERTIES deviceProduct
);

Multipath Management API Working Draft
Version 1.1
49

Parameters
pluginOid
A plugin OID.
deviceProduct
A device product to be added.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE

Returned when pluginOid does not specify any valid object type. This is most

likely to happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER

Returned when pluginOid has a type subfield other than

MP_MULTIPATH_LOGICAL_UNIT or the specified load balance type for

deviceProduct is either invalid or not supported by the plugin.
MP_STATUS_OBJECT_NOT_FOUND

Returned when pluginOid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS

Returned when the operation is successful.
MP_STATUS REBOOT_NECESSARY

The addition of the device product requires to reboot the host to be effective.
MP_STATUS_UNSUPPORTED

Returned when the API is not supported.

Remarks

Support
Optional.

See Also
MP_RemoveDeviceProductSupportFromPlugin

7.3 MP_AssignLogicalUnitToTPG
Synopsis
Assign a multipath logical unit to a target port group.

Prototype
MP_STATUS MP_AssignLogicalUnitToTPG(
/* in */MP_OID tpgOid;
/* in */MP_OID 1uOid;
)
Parameters
tpgOid
An MP_TARGET_PORT_GROUP object ID. The target port group currently in active

access state that the administrator would like the LU assigned to.
luOid

An MP_MULTIPATH_LOGICAL_UNIT object ID.

Multipath Management API Working Draft
Version 1.1
50

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when tpgOid or luOid does not specify any valid object type. This is most
likely to happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when tpgOid has a type subfield other than
MP_OBJECT_TYPE_TARGET_PORT_GROUP or luOid has a type subfield other
than MP_OBJECT_TYPE_MULTIPATH_LU.
MP_STATUS_OBJECT_NOT_FOUND
Returned when tpgOid or luOid owner ID or object sequence number is invalid.
MP_STATUS_UNSUPPORTED
Returned when the API is not supported.
MP_STATUS_SUCCESS
Returned when the operation is successful.

Remarks

Only valid if the target port group supportsLuAssignment is true. This capability is not defined
in SCSI standards. In some cases, devices support this capability through non-SCSI
interfaces. This method is only used when devices support this capability through vendor-
specific SCSI commands.

At any given time, each LU will typically be associated with two target port groups, one in
active state and one in standby state. The result of this API will be that the LU associations
change to a different pair of target port groups. The caller should specify the object ID of the
desired target port group in active access state.

Support
Optional.

See also
MP_GetAssociatedTPGOidList

MP_GetMPLuOidListFromTPG
MP_TARGET_PORT_GROUP_PROPERTIES.supportsLuAssignment
7.4 MP_CancelOverridePath

Synopsis
Cancel a path override and re-enable load balancing.

Prototype

MP_STATUS MP_CancelOverridePath(
/* in */ MP_OID logicalUnitOid;
)
Parameters

logicalUnitOid
An MP_MULTIPATH_LOGICAL_UNIT object ID.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when logicalUnitOid does not specify any valid object type. This is most
likely to happen if an uninitialized object ID is passed to the API.

Multipath Management API Working Draft
Version 1.1
51

MP_STATUS_INVALID_PARAMETER
Returned when logicalUnitOid has a type subfield other than
MP_MULTIPATH_LOGICAL_UNIT.
MP_STATUS_OBJECT_NOT_FOUND
Returned when logicalUnitOid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_UNSUPPORTED
Returned when the API is not supported.
Remarks
Only valid if canOverridePaths is true in plugin properties.
The previous load balance configuration and preferences in effect before the path was
overridden are restored.
Support

Optional.

See also
MP_SetOverridePath

7.5 MP_CompareOIDs

Synopsis
Compare two object IDs for equality to see whether they refer to the same object.

Prototype
MP_STATUS MP_CompareOlIDs (
/* in */ MP_OID oidl;
/* in */ MP_OID oid2;
)
Parameters
oid1, oid2
Object IDs for two objects to compare.
Typical return values

MP_STATUS_FAILED

Returned when the object IDs don't compare.
MP_STATUS_SUCCESS

Returned when the two object IDs do refer to the same object.

Remarks
The fields in the two object IDs are compared field-by-field for equality.

Support
Mandatory.

7.6 MP_DeregisterForObjectPropertyChanges

Synopsis
Deregisters a previously registered client function that is to be invoked whenever an object’s
property changes.

Multipath Management API Working Draft
Version 1.1
52

Prototype

MP_STATUS MP_DeregisterForObjectPropertyChanges (
/* in */ MP_OBJECT_PROPERTY_FN pClientFn,

/* in */ MP_OBJECT_TYPE objectType,
/* in */ MP_OID pluginOid
);
Parameters
pClientFn

A pointer to an MP_OBJECT_PROPERTY_FN function defined by the client that was
previously registered using the MP_RegisterForObjectPropertyChanges API. On
successful return this function will no longer be called to inform the client of object
property changes.

objectType
The type of object the client wishes to deregister for property change callbacks. If null,
then all object types are deregistered.

pluginOid
If this is a valid plugin object ID, then registration will be removed from that plugin. If this
is zero, then registration is removed for all plugins.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when pluginOid does not specify any valid object type. This is most
likely to happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when pluginOid is not zero and has a type subfield other than
MP_OBJECT_TYPE_PLUGIN.
MP_STATUS_OBJECT_NOT_FOUND
Returned when pluginOid owner ID or object sequence number is invalid.
MP_STATUS_UNKNOWN_FN
Returned when pClientFn is not the same as the previously registered function.
MP_STATUS_SUCCESS
Returned when pClientFn is deregistered successfully.
MP_STATUS_FAILED
Returned when pClientFn deregistration is not possible at this time.

Support
Mandatory.

Remarks
The function specified by pClientFn takes a single parameter of type
MP_OBJECT_PROPERTY_FN.

The function specified by pClientFn will no longer be called whenever an object’s property
changes.

See also
MP_RegisterForObjectPropertyChanges.

7.7 MP_DeregisterForObjectVisibilityChanges

Synopsis
Deregisters a client function to be called whenever a high level object appears or disappears.

Multipath Management API Working Draft
Version 1.1
53

Prototype

MP_STATUS MP_DeregisterForObjectCreationChanges (
/* in */ MP_OBJECT_VISIBILITY_FN pClientFn,

/* in */ MP_OBJECT_TYPE objectType,
/* in */ MP_OID pluginOid
)
Parameters
pClientFn

A pointer to an MP_OBJECT_VISIBILITY_FN function defined by the client that was
previously registered using the MP_RegisterForObjectVisibilityChanges API. On
successful return this function will no longer be called to inform the client of object
visibility changes.

objectType
The type of object the client wishes to deregister for visibility change callbacks. If null,
then all objects types are deregistered.

pluginOid
If this is a valid plugin object ID, then registration will be removed from that plugin. If this
is zero, then registration is removed for all plugins.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when pluginOid does not specify any valid object type. This is most
likely to happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when pluginOid is not zero or has a type subfield other than
MP_OBJECT_TYPE_PLUGIN.
MP_STATUS_OBJECT_NOT_FOUND
Returned when pluginOid owner ID or object sequence number is invalid.
MP_STATUS_UNKNOWN_FN
Returned when pClientFn is not the same as a previously registered function.
MP_STATUS_SUCCESS
Returned when pClientFn is deregistered successfully.
MP_STATUS_FAILED
Returned when pClientFn deregistration is not possible at this time

Support
Mandatory.

Remarks
The function specified by pClientFn takes a single parameter of type
MP_OBJECT_VISIBILITY_FN.

The function specified by pClientFn will no longer be called whenever high level objects
appear or disappear.

See also
MP_RegisterForObjectVisibilityChanges.

7.8 MP_DeregisterPlugin

Synopsis
Deregisters a plugin from the common library.

Multipath Management API Working Draft
Version 1.1
54

Prototype
MP_STATUS MP_DeregisterPlugin (
/* in */ MP_WCHAR *pPluginld
)
Parameters
pPluginid
A pointer to a Plugin ID previously registered using the MP_RegisterPlugin API.
Typical return values

MP_STATUS_INVALID_PARAMETER
Returned when pPluginld is null or specifies a memory area that is not executable.
MP_STATUS_UNKNOWN_FN
Returned when pPluginld is not the same as a previously registered function.
MP_STATUS_SUCCESS
Returned when pPluginld is deregistered successfully.
MP_STATUS_FAILED
Returned when pPluginld deregistration is not possible at this time
Support

Mandatory.

Remarks

The plugin will no longer be invoked by the common library. This APl does not dynamically
remove the plugin from a running library instance. Instead, it prevents an application that is
currently not using a plugin from accessing the plugin. This is generally the behavior
expected from dynamically loaded modules.

This API will typically be used during plugin deinstallation or upgrade.
Unlike some other APIs, this API is implemented entirely in the common library.

See also
MP_RegisterPlugin
7.9 MP_DisableAutoFailback
Synopsis
Disables auto-failback for the specified plugin or multipath logical unit.

Prototype

MP_STATUS MP_DisableAutoFailback(
/* in */MP_OID oid
);
Parameters
oid
The object ID of the plugin or the multipath logical unit.
Typical Return Values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.

Multipath Management API Working Draft
Version 1.1
55

MP_STATUS_INVALID_PARAMETER
Returned when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN or
MP_OBJECT_TYPE_MULTIPATH_LU.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful
MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

Support

Mandatory if MP_PLUGIN_PROPERTIES.autoFailbackSupported is not
MP_AUTOFAILBACK_SUPPORT_NONE.

See also
MP_EnableAutoFailback

7.10 MP_DisableAutoProbing

Synopsis
Disables auto-probing for the specified plugin or multipath logical unit.

Prototype

MP_STATUS MP_DisableAutoProbing(
/* in */ MP_OID oid
);
Parameters
oid
The object ID of the plugin or the multipath logical unit.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN or
MP_OBJECT_TYPE_MULTIPATH_LU.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

Support
Mandatory if MP_PLUGIN_PROPERTIES.autoProbingSupported is not
MP_AUTOPROBING_SUPPORT_NONE.
See also
MP_EnableAutoProbing.

Multipath Management API Working Draft
Version 1.1
56

7.11 MP_DisablePath
Synopsis
Disables a path. This APl may cause failover in a logical unit with asymmetric access.

Prototype
MP_STATUS MP_DisablePath(
/* in */MP_OID oid
);
Parameters
oid
The object ID of the path (MP_PATH_LOGICAL_UNIT_PROPERTIES).

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_INVALID_PARAMETER
Returned when oid does not have a type subfield of
MP_OBJECT_TYPE_PATH_LU.
MP_STATUS_UNSUPPORTED
Returned when the API is not supported.
MP_STATUS_TRY_AGAIN
Returned when the path cannot be disabled at this time.
MP_STATUS_NOT_PERMITTED
Returned when disabling this path would cause the logical unit to become
unavailable. Whether the implementation returns this value or allows the last path
to be disabled is implementation specific.
MP_STATUS_SUCCESS
Returned when the operation is successful.

Support
Optional.

Remarks
This APl sets MP_PATH_LOGICAL_UNIT_PROPERTIES.disabled to true.

See also
MP_EnablePath.

7.12 MP_EnableAutoFailback
Synopsis
Enables auto-failback.

Prototype

MP_STATUS MP_EnableAutoFai lback(
/* in */MP_OID oid

)

Parameters

oid
Multipath Management API Working Draft
Version 1.1

The object ID of the plugin or multipath logical unit.

Typical return values
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to

happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER

Returned when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN or

MP_OBJECT_TYPE_MULTIPATH_LU.
MP_STATUS_OBJECT_NOT_FOUND

Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS

Returned when the operation is successful.
MP_STATUS_UNSUPPORTED

Returned when the API is not supported.

Support

Mandatory if MP_PLUGIN_PROPERTIES.autoFailbackSupported
MP_AUTOFAILBACK_SUPPORT_NONE.

See also
MP_DisableAutoFailback

7.13 MP_EnableAutoProbing
Synopsis
Enables auto-probing.

Prototype
MP_STATUS MP_EnableAutoProbing(
/* in */MP_OID oid
);
Parameters
oid
The object ID of the plugin or multipath logical unit.
Typical return values
MP_STATUS_INVALID_OBJECT_TYPE

is not

Returned when oid does not specify any valid object type. This is most likely to

happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER

Returned when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN or

MP_OBJECT_TYPE_MULTIPATH_LU.
MP_STATUS_OBJECT_NOT_FOUND

Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS

Returned when the operation is successful.
MP_STATUS_UNSUPPORTED

Returned when the API is not supported.

Support

Mandatory if MP_PLUGIN_PROPERTIES.autoProbingSupported
MP_AUTOPROBING_SUPPORT_NONE.

Multipath Management API Working Draft
Version 1.1

is not

58

See also
MP_DisableAutoProbing.

7.14 MP_EnablePath

Synopsis
Enables a path. This APl may cause failover in a logical unit with asymmetric access.

Prototype

MP_STATUS MP_EnablePath(
/* in */MP_OID oid
)
Parameters
oid
The object ID of the path.
Typical return values

MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to

happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER

Returned when oid has a type subfield other than MP_OBJECT_TYPE_PATH_LU.
MP_STATUS_OBJECT_NOT_FOUND

Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_UNSUPPORTED

Returned when the API is not supported.
MP_STATUS_TRY_AGAIN

Returned when the path cannot be enabled at this time.
MP_STATUS_SUCCESS

Returned when the operation is successful

Support
Optional.

Remarks
This API sets MP_PATH_LOGICAL_UNIT_PROPERTIES.disabled to false.

See also
MP_DisablePath.

7.15 MP_FreeQidList
Synopsis
Frees memory returned by an MP API.

Prototype

MP_STATUS MP_FreeOidList(
/* in */ MP_OID_LIST *pOidList
)
Parameters
pOidList

Multipath Management API Working Draft
Version 1.1

59

A pointer to an object ID list returned by an MP API. On successful return, the allocated
memory is freed.

Typical return values

MP_STATUS_INVALID_PARAMETER
Returned when pOidList is null or specifies a memory area to which data cannot
be written.

MP_STATUS_SUCCESS
Returned when the operation is successful.

Remarks
Client shall free all MP_OID_LIST structures returned by any API by using this function.

Support
Mandatory.

7.16 MP_GetAssociatedPathOidList

Synopsis

Get a list of object IDs for all the path logical units associated with the specified multipath
logical unit, initiator port or target port.

Prototype

MP_STATUS MP_GetAssociatedPathOidList (
/* in */ MP_OID oid,
/* out */ MP_OID_LIST **ppList
)
Parameters
oid
The object ID of the multipath logical unit, initiator port or target port.
ppList
A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will

contain a pointer to an MP_OID_LIST that contains the object IDs of all the paths
associated with the specified (multipath) logical unit, initiator port or target port oid.

Typical return values

MP_STATUS_INVALID_PARAMETER
Returned when ppList is null or specifies a memory area to which data cannot be
written or when oid has a type subfield other than
MP_OBJECT_TYPE_MULTIPATH_LU, MP_OBJECT_TYPE_INITIATOR_PORT or
MP_OBJECT_TYPE_TARGET_PORT.
MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.

Remarks

When the caller is finished using the list it shall free the memory used by the list by calling
MP_FreeOidList.

Multipath Management API Working Draft
Version 1.1
60

Support
Mandatory.

See also
MP_GetPathLogicalUnitProperties.

7.17 MP_GetAssociatedPluginOid

Synopsis
Gets the object ID for the plugin associated with the specified object ID.

Prototype
MP_STATUS MP_GetAssociatedPluginOid(
/* in */ MP_OID oid
/* out */ MP_OID *pPluginOid
);
Parameters
oid
The object ID of an object that has been received from a previous API call.
pPluginOid

A pointer to an MP_OID structure allocated by the caller. On successful return this will
contain the object ID of the plugin associated with the object specified by oid.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when pluginQid is null or specifies a memory area to which data cannot
be written.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID is invalid.

Remarks
The sequence number subfield of oid is not validated since this API is implemented in the
common library.

Support
Mandatory.

7.18 MP_GetAssociatedTPGOidList
Synopsis

Get a list of the object IDs containing the target port group associated with the specified
multipath logical unit.

Prototype

MP_STATUS MP_GetAssociatedTPGOIdList(
/* in */ MP_OID oid,
/* out */ MP_OID_LIST **ppList

)

Multipath Management API Working Draft
Version 1.1
61

Parameters
oid
The object ID of the multipath logical unit.
ppList

A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of target port groups
associated with the specified logical unit.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when ppList is null or specifies a memory area to which data cannot be
written or oid has a type subfield other than
MP_OBJECT_TYPE_MULTIPATH_LU.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_FAILED
Returned when the target port group list for the specified object ID is not found.
MP_STATUS_INSUFFICIENT_MEMORY
Returned when memory allocation failure occurs.

Remarks
When the caller is finished using the list it shall free the memory used by the list by calling
MP_FreeOidList.

Support
Mandatory.

See also
MP_GetTargetPortGroupProperties.

7.19 MP_GetDeviceProductOidList

Synopsis
Gets a list of the object IDs of all the device product properties associated with this plugin.

Prototype

MP_STATUS MP_GetDeviceProductOidList(
/* in */ MP_OID oid,
/* out */ MP_OID_LIST **ppList
);
Parameters
oid
The object ID of the plugin.
ppList

A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of all the device
product descriptors associated with the specified plugin.

Multipath Management API Working Draft
Version 1.1
62

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to

happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER

Returned when ppList is null or specifies a memory area to which data cannot be

written oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN.
MP_STATUS_OBJECT_NOT_FOUND

Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS

Returned when the operation is successful.
MP_STATUS_FAILED

Returned when the plugin for the specified object ID is not found.
MP_STATUS_INSUFFICIENT_MEMORY

Returned when memory allocation failure occurs.
MP_STATUS_UNSUPPORTED

Returned when the API is not supported.

Remarks
When the caller is finished using the list it shall free the memory used by the list by calling
MP_FreeOidList.

Support
Required if the driver supports product-specific load balance types.

See also
MP_GetDeviceProductProperties.

7.20 MP_GetDeviceProductProperties
Synopsis
Get the properties of the specified device product.

Prototype

MP_STATUS MP_GetDeviceProductProperties(
/* in */ MP_OID oid,
/* out */ MP_DEVICE_PRODUCT_PROPERTIES *pProps
)
Parameters
oid
The object ID of the device product.
pProps
A pointer to an MP_DEVICE_PRODUCT_PROPERTIES structure allocated by the caller.

On successful return this structure will contain the properties of the device product
specified by oid.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.

Multipath Management API Working Draft
Version 1.1
63

MP_STATUS_INVALID_PARAMETER
Returned when pProps is null or specifies a memory area to which data cannot be
written or oid has a type subfield other than
MP_OBJECT_TYPE_DEVICE_PRODUCT.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_FAILED
Returned when the plugin for the specified oid is not found.
MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API.

Support
Required if the driver supports product-specific load balance types.

See also
MP_GetDeviceProductOidList.

7.21 MP_GetlnitiatorPortOidList

Synopsis
Gets a list of the object IDs of all the initiator ports associated with this plugin.
Prototype
MP_STATUS MP_GetlnitiatorPortOidList(
/* in */ MP_OID oid,
/* out */ MP_OID_LIST **ppList
);
Parameters
oid
The object ID of the plugin.
ppList

A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of all the initiator ports
associated with the specified plugin.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to

happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER

Returned when pplist is null or specifies a memory area to which data cannot be

written or when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN.
MP_STATUS_OBJECT_NOT_FOUND

Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS

Returned when the operation is successful.
MP_STATUS_INSUFFICIENT_MEMORY

Returned when memory allocation failure occurs.

Remarks

When the caller is finished using the list it shall free the memory used by the list by calling
MP_FreeOidList.

Multipath Management API Working Draft
Version 1.1
64

Support
Mandatory.

See also
MP_GetlnitiatorPortProperties.

7.22 MP_GetInitiatorPortProperties

Synopsis
Gets the properties of the specified initiator port.

Prototype
MP_STATUS MP_GetlnitiatorPortProperties(
/* in */ MP_OID oid,
/* out */ MP_INITIATOR_PORT_PROPERTIES *pProps
);
Parameters
oid
The object ID of the port.
pProps

A pointer to an MP_INITIATOR_PORT_PROPERTIES structure allocated by the caller. On
successful return, this structure will contain the properties of the port specified by oid.

Typical return values

MP_STATUS_INVALID_PARAMETER
Returned when pProps is null or specifies a memory area to which data cannot be
written or when oid has a type subfield other than
MP_OBJECT_TYPE_INITIATOR_PORT.
MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.

Support
Mandatory.

See also
MP_GetlnitiatorPortOidList.

7.23 MP_GetLibraryProperties

Synopsis
Gets the properties of the MP library that is being used.

Prototype

MP_STATUS MP_GetLibraryProperties(
/* out */ MP_LIBRARY_PROPERTIES *pProps

)

Multipath Management API Working Draft
Version 1.1
65

Parameters
pProps
A pointer to an MP_LIBRARY_PROPERTIES structure allocated by the caller. On

successful return this structure will contain the properties of the MP library that is being
used.

Typical return values

MP_STATUS_INVALID_PARAMETER

Returned when pProps is null or specifies a memory area which cannot be written.
MP_STATUS_SUCCESS

Returned when the operation is successful.

Support
Mandatory.

See also
Example of Getting Library Properties.

7.24 MP_GetMPLuUOidListFromTPG

Synopsis
Returns the list of object IDs for multipath logical units associated with the specific target port
group.

Prototype

MP_STATUS MP_GetMPLuOidListFromTPG(
/* in */ MP_OID oid,
/* out */ MP_OID “**ppList
);
Parameters
oid
The object ID of the target port group.
ppList
A pointer to a pointer to an MP_OID_LIST structure. On successful return, this will contain

a pointer to an MP_OID_LIST that contains the object IDs of all the (multipath) logical
units associated with the specified target port group.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when pplist is null or specifies a memory area to which data cannot be
written or when oid has a type subfield other than
MP_OBJECT_TYPE_TARGET_PORT.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_FAILED
Returned when the multipath logical unit list for the specified target port group
object ID is not found

Multipath Management API Working Draft
Version 1.1
66

MP_STATUS_INSUFFICIENT_MEMORY
Returned when memory allocation failure occurs.

Remarks

When the caller is finished using the list it shall free the memory used by the list by calling
MP_FreeOidList.

Support
Mandatory.

See also
MP_GetMPLogicalUnitProperties.

7.25 MP_GetMPLogicalUnitProperties

Synopsis
Get the properties of the specified logical unit.

Prototype

MP_STATUS MP_GetMPLogicalUnitProperties(
/* in */ MP_OID oid,
/* out */ MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES *pProps
);
Parameters
oid
The object ID of the multipath logical unit.
pProps
A pointer to an MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES structure allocated by

the caller. On successful return, this structure will contain the properties of the multipath
logical unit specified by oid.

Typical Return Values

MP_STATUS_INVALID_PARAMETER
Returned when pProps is null or specifies a memory area to which data cannot be
written or when oid has a type subfield other than
MP_OBJECT_TYPE_MULTIPATH_LU.
MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_LU_NONOPERATIONAL
Returned when the plugin and the multipathing driver cannot acquire the properties of the
multipath logical unit associated with oid because it is not operational.
MP_STATUS_SUCCESS
Returned when the operation is successful

Support
Mandatory.
See also
MP_GetMPLuOidListFromTPG.
MP_GetMultipathLus.

Multipath Management API Working Draft
Version 1.1
67

7.26 MP_GetMultipathLus
Synopsis
Returns a list of multipath logical units associated to a plugin.

Prototype

MP_STATUS MP_GetMultipathLus(
/* in */ MP_OID oid,
/* out */ MP_OID_LIST **ppList
);
Parameters
oid
The object ID of the plugin or device product object.
ppList

A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of all the (multipath)
logical units associated with the specified plugin object ID.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when ppList is null or specifies a memory area that cannot be written or
when oid has a type subfield other than MP_OBJECT_TYPE_DEVICE_PRODUCT
or MP_OBJECT_TYPE_PLUGIN.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_FAILED
Returned when the plugin for the specified object ID is not found.
MP_STATUS_INSUFFICIENT_MEMORY
Returned when memory allocation failure occurs.

Remarks
When the caller is finished using the list it shall free the memory used by the list by calling
MP_FreeOidList.

Support
Mandatory.

See also
MP_GetLogicalUnitProperties.

7.27 MP_GetObjectType

Synopsis
Gets the object type of an initialized object ID.

Prototype

MP_STATUS MP_GetObjectType(
/* in */ MP_OID oid,
/* out */ MP_OBJECT_TYPE *pObjectType
Multipath Management API Working Draft

Version 1.1
68

);
Parameters
oid
The initialized object ID to get the type of.
pObjectType

A pointer to an MP_OBJECT_TYPE variable allocated by the caller. On successful return
it will contain the object type of oid.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when pObjectType is null or specifies a memory area to which data
cannot be written.
MP_STATUS_SUCCESS
Returned when the operation is successful.

Remarks
This APl is provided so that clients can determine the type of object an object ID represents. This
can be very useful for a client function that receives notifications.
Support
Mandatory.

See also
MP_RegisterForObjectVisibilityChanges.

7.28 MP_GetPathLogicalUnitStatistics

Synopsis
Get the statistics counter of the specified path logical unit.

Prototype
MP_STATUS MP_GetPathLogicalUnitStatistics(
/* in */ MP_OID oid,
/* out */ MP_PATH_LOGICAL_UNIT_STATISTICS *pStatistics
);
Parameters
oid
The OID of a path logical unit.
pStatistics

A pointer to an MP_PATH_LOGICAL_UNIT_STATISTICS structure allocated by the caller.
On successful return, this structure will contain the statistics counter of the path specified
by oid.

Typical return values

MP_STATUS_INVALID_PARAMETER
Returned when pStats is null or specifies a memory area to which data cannot be
written or when oid has a type subfield other than MP_OBJECT_TYPE_PATH_LU.

Multipath Management API Working Draft
Version 1.1
69

MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to

happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND

Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS

Returned when the operation is successful.

Remarks

Either data category or both data and control categories may be provided for number of I/O
operations and byte counts by the associated multipath support. For read and write
categories, number of I/O operations, byte counts, response time and wait time may be
subdivided into those categories if the associated multipathing support provides such
division. If they are, both read and write categories shall be provided. The
MP_STATISTICS_UNSUPPORTED is set for any field that is not supported by the
associated multipathing support.

Support

Mandatory

See also

MP_GetAssociatedPathOidList, MP_GetPathLogicalUnitDistributedStatistics. Example of
Getting Statistics on a Path Logical Unit.

7.29 MP_GetPathLogicalUnitDistributedStatistics
Synopsis

Get the distributed statistics of the specified path.
Prototype

MP_STATUS MP_GetPathLogicalUnitDistributedStatistics(

/* in */ MP_OID oid,

/* in */ MP_STATISTICS_DATA_TYPE dataType,

/* out */ MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS
*pStatistics

):

Parameters

oid

The object ID of the path logical unit.
dataType

The requested data type of distributed statistics data.
pStatistics

A pointer to the MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS structure.

Typical return values

MP_STATUS_INVALID_PARAMETER
Returned when pStats is null or specifies a memory area to which data cannot be
written or when oid has a type subfield other than MP_OBJECT_TYPE_PATH_LU.

Multipath Management API Working Draft
Version 1.1
70

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_MORE_DATA
Returned when a plugin supports distributed statistics for the given data type and
the bucketCount within pStatistics structure is less than the actual number of
buckets. The bucket counter indicates the actual number of buckets and the client
can determine the size of buffer to be passed.
MP_STATUS_UNSUPPORTED
Returned when a plugin does not support the interface.
MP_STATUS_SUCCESS
Returned when the operation is successful.

Remarks
The bucketCount field from the MP_DISTRIBUTED_STATISTICS structure
represents the size of the bucket array within the input buffer pointed by
pStatistics. It is caller’s responsibility to allocate appropriate size of buffer based
on the value of the bucketCount field.

The client needs to call this interface with a specific type of MP_STATISTICS_DATA_TYPE
to find out if a particular statistics data type is supported. If the interface itself is not
supported the associated multipathing support shall return MP_STATUS_UNSUPPORTED
for all statistics data types.

Support

Optional

See also

MP_GetAssociatedPathOidList, MP_GetPathLogicalUnitStatistics. Getting the Distributed
Statisitics on a Path Logical Unit.

7.30 MP_GetPathLogicalUnitProperties

Synopsis
Get the properties of the specified path.

Prototype
MP_STATUS MP_GetPathLogicalUnitProperties(
/* in */ MP_OID oid,
/* out */ MP_PATH_LOGICAL_UNIT_PROPERTIES *pProps
)
Parameters
oid
The object ID of the path logical unit.
pProps
A pointer to an MP_PATH_LOGICAL_UNIT_PROPERTIES structure allocated by the

caller. On successful return, this structure will contain the properties of the path specified
by oid.

Multipath Management API Working Draft
Version 1.1
71

Typical return values

MP_STATUS_INVALID_PARAMETER

Returned when pProps is null or specifies a memory area to which data cannot be

written or when oid has a type subfield other than MP_OBJECT_TYPE_PATH_LU.
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to

happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND

Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS

Returned when the operation is successful.

Support
Mandatory.

See also
MP_GetAssociatedPathOidList.

7.31 MP_GetPluginOidList

Synopsis
Gets a list of the object IDs of all currently loaded plugins.

Prototype
MP_STATUS MP_GetPluginOidList(
/* out */ MP_OID_LIST **ppList
);

Parameters

ppList

A pointer to a pointer to an MP_OID_LIST. On successful return this will contain a pointer
to an MP_OID_LIST that contains the object IDs of all of the plugins currently loaded by
the library.

Typical return values

MP_STATUS_INVALID_PARAMETER
Returned when ppList is null or specifies a memory area to which data cannot be
written.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_FAILED
Returned when the plugin for the specified object ID is not found.
MP_STATUS_INSUFFICIENT_MEMORY
Returned when memory allocation failure occurs.

Remarks

The returned list is guaranteed to not contain any duplicate entries.

When the caller is finished using the list it shall free the memory used by the list by calling
MP_FreeOidList.

Support
Mandatory.

Multipath Management API Working Draft
Version 1.1
72

See also
MP_FreeOidList, MP_GetPluginProperties, Example of Getting Plugin Properties.

7.32 MP_GetPluginProperties

Synopsis
Gets the properties of the specified plugin.

Prototype
MP_STATUS MP_GetPluginProperties(
/* in */ MP_OID oid,
/* out */ MP_PLUGIN_PROPERTIES *pProps
);
Parameters
oid
The object ID of the plugin.
pProps
A pointer to an MP_PLUGIN_PROPERTIES structure allocated by the caller. On
successful return, this structure will contain the properties of the plugin specified by oid.

Typical return values

MP_STATUS_INVALID_PARAMETER

Returned when pProps is null or specifies a memory area to which data cannot be

written or when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN.
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to

happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND

Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS

Returned when the operation is successful.

Support
Mandatory.

See also
MP_GetProprietaryLoadBalanceProperties.

MP_ GetPluginOidList.

7.33 MP_GetProprietaryLoadBalanceOidList

Synopsis
Gets a list of the object IDs of all the proprietary load balance algorithms associated with this
plugin.

Prototype

MP_STATUS MP_GetProprietaryLoadBalanceOidList(
/* in */ MP_OID oid,
/* out */ MP_OID_LIST **ppList
)
Parameters
oid
Multipath Management API Working Draft

Version 1.1
73

The object ID of the plugin.

ppList
A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of all the proprietary
load balance types associated with the specified plugin.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to

happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER

Returned when ppList is null or specifies a memory area to which data cannot be

written or if oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN.
MP_STATUS_OBJECT_NOT_FOUND

Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS

Returned when the operation is successful.
MP_STATUS_FAILED

Returned when the plugin for the specified object ID is not found.
MP_STATUS_INSUFFICIENT_MEMORY

Returned when memory allocation failure occurs.
MP_STATUS_UNSUPPORTED

Returned when the implementation does not support the API.

Remarks
When the caller is finished using the list it shall free the memory used by the list by calling
MP_FreeOidList.

Support
Optional.

See also
MP_GetProprietaryLoadBalanceProperties.

7.34 MP_GetProprietaryLoadBalanceProperties
Synopsis
Get the properties of the specified load balance properties structure.

Prototype

MP_STATUS MP_GetProprietarylLoadBalanceProperties (
/* in */ MP_OID oid,
/* out */ MP_PROPRIETARY_LOAD BALANCE_PROPERTIES *pProps
);
Parameters
oid
The object ID of the proprietary load balance structure.
pProps
A pointer to an MP_PROPRIETARY_LOAD_BALANCE_PROPERTIES structure allocated

by the caller. On successful return, this structure will contain the properties of the
proprietary load balance algorithm specified by oid.

Multipath Management API Working Draft
Version 1.1
74

Typical return values

MP_STATUS_INVALID_PARAMETER

Returned when pObjectType is null or specifies a memory area to which data

cannot be written or when oid has a type subfield other than

MP_OBJECT_TYPE_PROPRIETARY_LOAD_BALANCE.
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to

happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND

Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS

Returned when the operation is successful.

Support
Optional.

See also
MP_GetProprietaryLoadBalanceOidList.

7.35 MP_GetTargetPortGroupProperties

Synopsis
Get the properties of the specified target port group.

Prototype

MP_STATUS MP_GetTargetPortGroupProperties(
/* in */ MP_OID oid,
/* out */ MP_TARGET_PORT_GROUP_PROPERTIES *pProps
);
Parameters
oid
The object ID of the target port group.
pProps
A pointer to an MP_TARGET_PORT_GROUP_PROPERTIES structure allocated by the

caller. On successful return, this structure will contain the properties of the target port
group specified by oid.

Typical return values

MP_STATUS_INVALID_PARAMETER

Returned when pProps is null or specifies a memory area to which data cannot be

written or when oid has a type subfield other than

MP_OBJECT_TYPE_TARGET_PORT_GROUP.
MP_STATUS_INVALID_OBJECT_TYPE

Returned when oid does not specify any valid object type. This is most likely to

happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND

Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS

Returned when the operation is successful.

Remarks
None.

Multipath Management API Working Draft
Version 1.1
75

Support
Mandatory.

See also
MP_GetAssociatedTPGOidList.

7.36 MP_GetSupportedDeviceProductCategory

Synopsis
Get the supported device product categories for a plugin.

Prototype
MP_STATUS MP_GetSupportedDeviceProductCategory(
/* in */ MP_OID pluginOid,
/* out */ MP_SUPPORTED DEVICE_PRODUCT_CATEGORY
*pDeviceProductCat
);

Parameters
pluginOid
The object ID of the plugin.
pDeviceProductCat

A pointer to an MP_SUPPORTED_DEVICE_PRODUCT_CATEGORY flag. On successful
return, this flag will indicate which categories are supported by the plugin.

Typical return values

MP_STATUS_INVALID_PARAMETER
Returned when pDeviceProductCat is null or specifies a memory area to which
data cannot be written or when pluginOid has a type subfield other than
MP_OBJECT_TYPE_PLUGIN.
MP_STATUS_INVALID_OBJECT_TYPE
Returned when pluginOid does not specify any valid object type. This is most
likely to happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND
Returned when pluginOid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.

Remarks

If the onlySupportsSpecifiedProducts in the MP_PLUGIN_PROPERTIES structure is set to
true, this interface provides more granular device product support information.

Support
Optional.

See also
MP_SUPPORTED_DEVICE_PRODUCT_CATEGORY

7.37 MP_GetTargetPortOidList
Synopsis
Get a list of the object IDs of the target ports in the specified target port group.

Multipath Management API Working Draft
Version 1.1
76

Prototype
MP_STATUS MP_GetTargetPortOidList(
/* in */ MP_OID oid,
/* out */ MP_OID_LIST **ppList
);
Parameters
oid
The object ID of the target port group.
ppList

A pointer to a pointer to an MP_OID_LIST structure. On a successful return, this will
contain a pointer to an MP_OID_LIST that contains the object IDs of all the target ports
associated with the specified target port group oid.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when ppList is null or specifies a memory area to which data cannot be
written or when oid has a type subfield other than
MP_OBJECT_TYPE_TARGET_PORT.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_FAILED
Returned when the target port group for the specified object ID is not found.
MP_STATUS_INSUFFICIENT_MEMORY
Returned when memory allocation failure occurs.

Remarks
When the caller is finished using the list it shall free the memory used by the list by calling
MP_FreeOidList.

Support
Mandatory.

See also
MP_GetTargetPortProperties.

7.38 MP_GetTargetPortProperties

Synopsis
Gets the properties of the specified target port.

Prototype
MP_STATUS MP_GetTargetPortProperties(
/* in */ MP_OID oid,
/* out */ MP_TARGET_PORT_PROPERTIES *pProps
)
Parameters
oid

Multipath Management API Working Draft
Version 1.1
77

The object ID of the port.

pProps
A pointer to an MP_TARGET_PORT_PROPERTIES structure allocated by the caller. On
successful return, this structure will contain the properties of the port specified by oid.

Typical return values

MP_STATUS_INVALID_PARAMETER
Returned when pProps is null or specifies a memory area to which data cannot be
written or when oid has a type subfield other than
MP_OBJECT_TYPE_TARGET_PORT.
MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.

Support
Mandatory.

See also
MP_GetTargetPortOidList.

7.39 MP_RegisterForObjectPropertyChanges

Synopsis
Registers a client function to be called whenever the property of an object changes.

Prototype

MP_STATUS MP_RegisterForObjectPropertyChanges (
/* in */ MP_OBJECT_PROPERTY_FN pClientFn,

/* in */ MP_OBJECT_TYPE objectType,
/* in */void *pCallerData,
/* in */MP_OID pluginOid
)
Parameters
pClientFn

A pointer to an MP_OBJECT_PROPERTY_FN function defined by the client. On
successful return this function will be called to inform the client of objects that have had
one or more properties change.

objectType
The type of object the client wishes to register for property change callbacks. If
MP_OBJECT_TYPE_UNKNOWN, then all object types are registered.

pCallerData
A pointer that is passed to the callback routine with each event. This may be used by the
caller to correlate the event to source of the registration.

pluginOid
If this is a valid plugin object ID, then registration will be limited to that plugin. If this is
zero, then the registration is for all plugins.

Multipath Management API Working Draft
Version 1.1
78

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when pluginOid or objectType does not specify any valid object type.
This is most likely to happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND
Returned when pluginOid owner ID or object sequence number is invalid.
MP_STATUS_INVALID_PARAMETER
Returned when pCallerData is null or if pluginOid has a type subfield other than
MP_OBJECT_TYPE_PLUGIN or when objectType is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_FN_REPLACED
Returned when an existing client function is replaced with the one specified in
pClientFn.

Support
Mandatory.

Remarks

The function specified by pClientFn takes a single parameter of type
MP_OBJECT_PROPERTY_FN.

The function specified by pClientFn will be called whenever the property of an object
changes. For the purposes of this function a property is defined to be a field in an object’s
property structure and the object’s status. Therefore, the client function will not be called if a
statistic of the associated object changes. But, it will be called when the status changes (e.g.
from working to failed) or when a name or other field in a property structure changes.

It is not an error to re-register a client function. However, a client function has only one
registration. The first call to deregister a client function will deregister it no matter how many
calls to register the function have been made.

If multiple properties of an object change simultaneously, a client function may be called only
once to be notified that the changes have occurred.

See also
MP_DeregisterForObjectPropertyChanges.

7.40 MP_RegisterForObjectVisibilityChanges

Synopsis
Registers a client function to be called whenever a high level object appears or disappears.
Prototype
MP_STATUS MP_RegisterForObjectVisibilityChanges (
/* in */ MP_OBJECT_VISIBILITY_FN pClientFn,
/* in */ MP_OBJECT_TYPE objectType,
/* in */void *pCallerData,
/* in */MP_OID pluginOid
)
Parameters
pClientFn

A pointer to an MP_OBJECT_VISIBILITY_FN function defined by the client. On successful
return this function will be called to inform the client of objects whose visibility has
changed.

Multipath Management API Working Draft
Version 1.1
79

objectType

The type of object the client wishes to register for visibility change callbacks. If
MP_OBJECT_TYPE_UNKNOWN, then all objects types are registered.
pCallerData

A pointer that is passed to the callback routine with each event. This may be used by the
caller to correlate the event to source of the registration.

pluginOid
If this is a valid plugin object ID, then registration will be limited to that plugin. If this is
zero, then the registration is for all plugins.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when pluginOid or objectType does not specify any valid object type.
This is most likely to happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND
Returned when pluginOid owner ID or object sequence number is invalid.
MP_STATUS_INVALID_PARAMETER
Returned when pCallerData is null or pluginOid has a type subfield other than
MP_OBJECT_TYPE_PLUGIN or when objectType is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_FN_REPLACED
Returned when an existing client function is replaced with the one specified in
pClientFn.

Support
Mandatory.

Remarks

The function specified by pClientFn takes a single parameter of type
MP_OBJECT_VISIBILITY_FN.

The function specified by pClientFn will be called whenever objects appear or disappear.

It is not an error to re-register a client function. However, a client function has only one
registration. The first call to deregister a client function will deregister it, no matter how many
calls to register the function have been made.

See also
MP_DeregisterForObjectVisibilityChanges.

7.41 MP_RegisterPlugin

Synopsis

Registers a plugin with the common library. In a POSIX environment, this may be
implemented by adding an entry to a conf file. In Windows, it may be accomplished with a
registry entry.

Prototype
MP_STATUS MP_RegisterPlugin (
/* in */ MP_WCHAR *pPluginlid,
/* in */ MP_CHAR *pFileName
)
Multipath Management API Working Draft
Version 1.1

80

Parameters
pPluginid
A pointer to the key name shall be the reversed domain name of the vendor followed by

.” followed by the vendor specific name for the plugin that uniquely identifies the plugin.
pFileName

The full path to the plugin library.

Typical return values

MP_STATUS_INVALID_PARAMETER
Returned when pFileName does not exist.
MP_STATUS_SUCCESS
Returned when the operation is successful.
Support

Mandatory.

Remarks
Unlike some other APIs, this API is implemented entirely in the common library. It shall be
called before the common library will invoke a plugin.

This APl does not impact, dynamically add or change plugins bound to a running library
instance. Instead, it causes an application that is currently not using a plugin to access the
specified plugin on future calls to the common library. This is generally the behavior expected
from dynamically loaded modules.

This API is typically called by a plugin's installation software to inform the common library the
path for the plugin library.

It is not an error to re-register a plugin. However, a plugin has only one registration. The first
call to deregister a plugin will deregister it, no matter how many calls to register the plugin
have been made.

A vendor may register multiple plugins by using separate plugin IDs and filenames.

See also
MP_DeregisterPlugin.

7.42 MP_RemoveDeviceProductFromPlugin

Synopsis
Remove a device product from a plugin support.

Prototype
MP_STATUS MP_RemoveDeviceProductFromPlugin(
/* in */ MP_OID pluginOid,
/* in */ MP_OID deviceProductOid
);
Parameters
pluginOid
A pluginOid.
deviceProductOid
A device product to be removed.

Multipath Management API Working Draft
Version 1.1
81

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when pluginOid or deviceProductOid does not specify any valid object
type. This is most likely to happen if an uninitialized object ID is passed to the
API.
MP_STATUS_INVALID_PARAMETER
Returned when pluginOid or deviceProductOid has a type subfield other than
MP_MULTIPATH_LOGICAL_UNIT or MP_DEVICE_PROCDUCT_TYPE.
MP_STATUS_OBJECT_NOT_FOUND
Return when pluginOid or deviceProductOid owner ID or object sequence number
is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_REBOOT_NECESSARY
The addition of the device product requires to reboot he host to be effecitve.
MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

Remarks

Support
Optional.

See Also
MP_AddDeviceProductSupportToPlugin

7.43 MP_SendSCSICommand

Synopsis
Send a SCSI command to a multipath logical unit through a specific path logical unit.

Prototype

MP_STATUS MP_SendSCSICommand(
/* in */ MP_OID logicaluUnitOid,
/* in */ MP_OID pathOid,
/* in */ MP_CHAR *cmdBuffer,
/* in */ MP_UINT32 cmdBufferSize,
/* out */ MP_CHAR *datalnBuffer,
/* in */ MP_UINT32 datalnBufferSize,
/* out */ MP_BYTE scsiStatus,
/* out */ MP_CHAR *senseBuffer,
/* in */ MP_UINT32 *senseBufferSize,
/* Iin */ MP_UINT32 cmdTimeOutValue,
/* in & out */ MP_CHAR *dataOutBuffer,
/* in */ MP_UINT32 dataOutBufferSize,
/* out */ MP_UINT32 residualCount,
/* in */ MP_UINT32 proprietaryMode

Multipath Management API Working Draft
Version 1.1

82

Parameters

logicalUnitOid

The object ID of the multipath logical unit to receive the command.
PathOid

The object ID of the path logical unit to send the command down.
CmdBuffer

A buffer to pass SCSI CDB
cmdBufferSize

The size of SCSI CDB buffer
datalnBuffer

A buffer to store any data to be received by the logocal unit device.
datalnBufferSize

The size of the data-in buffer
scsiStatus

SCSI status for the command
senseBuffer

A buffer to store SCSI sense data
senseBufferSize

The size of sense buffer
cmdTimeOutValue

The time out value to be applied for the command.
dataOutBuffer

A buffer to receive the data from a device.
dataOutBufferSize

The size of data-out buffer
residualCount

The residual count for an incomplete SCSI data transfer.
proprietaryMode

Proprietary mode flag to be passed to the plugin that owns the logical unit.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when logicalUnitOid or path Oid does not specify any valid object type.
This is most likely to happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when logicalUnitOid or pathOid has a type subfield other than
MP_OBJECT_TYPE_MULTIPATH_LU or MP_OBJECT_TYPE_PATH_LU.
MP_STATUS_OBJECT_NOT_FOUND
Returned when owner ID or object sequence number of logicalUnitOid or pathOid
is invalid.
MP_STATUS_FAILED
Returned when the plugin and the associated multipathing driver failed to pass
down the command.
MP_STATUS_NOT_PERMITTED
Returned when the command was not permitted by the plugin or the multipathing
driver.
MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API.

Multipath Management API Working Draft
Version 1.1
83

MP_STATUS_SUCCESS

Returned when the command was passed down successfully. The scsiStatus field

contains the actual status of the SCSI command

Support
Mandatory

7.44 MP_SetDeviceProductLoadBalanceType

Synopsis
Set the device product’s load balancing policy.

Prototype

MP_STATUS MP_SetDeviceProductBalanceType(
/* in */ MP_OID deviceProductOid,
/* in */ MP_LOAD_BALANCE_TYPE loadBalance

)
Parameters

deviceProductOid

The object ID of the device product.
loadBalance
The desired load balance policy for the specified logical unit.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when deviceProductOid does not specify any valid object type. This is
most likely to happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when loadBalance is invalid or deviceProductOid has a type subfield
other than MP_OBJECT_TYPE_MULTIPATH_LU.
MP_STATUS_OBJECT_NOT_FOUND
Returned when deviceProductOid owner ID or object sequence number is invalid
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_FAILED
Returned when the specified loadBalance type cannot be handled by the
associated plugin.
MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API.

Remarks

The value shall correspond to one of the supported values
MP_PLUGIN_PROPERTIES.SupportedLogicalUnitLoadBalanceTypes.

Support
Optional.

Multipath Management API Working Draft
Version 1.1

in

84

7.45 MP_SetLogicalUnitLoadBalanceType

Synopsis
Set the multipath logical unit's load balancing policy.

Prototype

MP_STATUS MP_SetLogicalUnitLoadBalanceType(
/* in */ MP_OID logicalUnitoid,
/* in */ MP_LOAD_BALANCE_TYPE loadBalance
);

Parameters

logicalUnitOid

The object ID of the multipath logical unit.
loadBalance

The desired load balance policy for the specified logical unit.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when logicalUnitOid does not specify any valid object type. This is most
likely to happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when loadBalance is invalid or logicalUnitOid has a type subfield other
than MP_OBJECT_TYPE_MULTIPATH_LU.
MP_STATUS_OBJECT_NOT_FOUND
Returned when logicalUnitOid owner ID or object sequence number is invalid
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_FAILED
Returned when the specified loadBalance type cannot be handled by the plugin.
One possible reason is a request to set MP_LOAD_BALANCE_TYPE_PRODUCT
when the specified logical unit has no corresponding
MP_DEVICE_PRODUCT_PROPERTIES instance (i.e. the plugin does not have a
product-specific load balance algorithm for the LU product).
MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API.

Remarks
The value shall correspond to one of the supported values in
MP_PLUGIN_PROPERTIES.SupportedLogicalUnitLoadBalanceTypes.

Support
Optional.

7.46 MP_SetOverridePath

Synopsis

Manually override the path for a logical unit. The path exclusively used to access the logical
unit until cleared. Use MP_CancelOverride to clear the override.

Prototype

MP_STATUS MP_SetOverridePath(
/* in */ MP_OID logicalUnitOid,
/* in */ MP_OID pathOid
)
Multipath Management API Working Draft

Version 1.1
85

Parameters

logicalUnitOid
The object ID of the multipath logical unit.
pathOid

The object ID of the path logical unit.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when logicalUnitOid or pathOid does not specify any valid object type.
This is most likely to happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when logicalUnitOid has a type subfield other than
MP_OBJECT_TYPE_MULTIPATH_LU or if pathOid has an object type other than
MP_OBJECT_TYPE_PATH_LU.
MP_STATUS_OBJECT_NOT_FOUND

Returned when logicalUnitOid or pathOid owner ID or object sequence number is
invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API.
MP_STATUS_PATH_NONOPERATIONAL
Returned when the driver cannot communicate through a selected path.

Remarks

This API allows the administrator to disable the driver’s load balance algorithm and force all
I/O to a specific path. The existing path weight configuration is maintained. If the
administrator undoes the override (by calling MP_CancelOverridePath), the driver will start
load balancing based on the weights of available paths (and target port group access state
for asymmetric devices).

If the multipath logical unit is part of a target with asymmetrical access, executing this
command could cause failover.

Support
Optional.

7.47 MP_SetPathWeight
Synopsis
Set the weight to be assigned to a particular path.

Prototype
MP_STATUS MP_SetPathWeight(
/* in */ MP_OID pathOid,
/* in */ MP_UINT32 weight
)
Parameters

logicalUnitOid

The object ID of the path logical unit.
weight

A weight that will be assigned to the path logical unit.

Multipath Management API Working Draft
Version 1.1
86

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when pathOid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND
Returned when pathQOid ownerID or object sequence number is invalid.
MP_STATUS_INVALID_PARAMETER
Returned when pathOid has a type subfield other than
MP_OBJECT_TYPE_PATH_LU or when the weight parameter is greater than the
plugin’s maximumWeight property.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_FAILED
Returned when the operation failed.
MP_STATUS_UNSUPPORTED
Returned when the driver does not support setting path weight.

Support
Optional.

7.48 MP_SetPluginLoadBalanceType
Synopsis
Set the default load balance policy for the plugin.

Prototype

MP_STATUS MP_SetPluginLoadBalanceType(
/* in */MP_OID oid,
/* in */ MP_LOAD_BALANCE_TYPE loadBalance
);
Parameters
oid
The object ID of the plugin.
loadBalance

The desired default load balance policy for the specified plugin.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when loadBalance is invalid or when oid has a type subfield other than
MP_OBJECT_TYPE_PLUGIN.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid ownerlID or sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_FAILED
Returned when the specified loadBalance type cannot be handled by the plugin.
MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API.

Multipath Management API Working Draft
Version 1.1
87

Remarks

The value shall correspond to one of the supported values in
MP_PLUGIN_PROPERTIES.SupportedPluginLoadBalanceTypes.

Support
Optional.

7.49 MP_SetFailbackPollingRate

Synopsis
Set the polling rates. Setting pollingRate to zero disables polling.

Prototype

MP_STATUS MP_SetPollingRate(
/* in */MP_OID oid,
/* in */ MP_UINT32 pollingRate
)
Parameters
oid
An object ID of either the plugin or a multipath logical unit.
pollingRate

The value to be set in MP_PLUGIN_PROPERTIES currentFailbackPollingRate or
MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES failbackPollingRate.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when one of the polling values is outside the range supported by the
driver or when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN or
MP_OBJECT_TYPE_MULTIPATH_LU.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid ownerlD or object sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API.

Remarks

If the object ID refers to a plugin, then this will set the currentFailbackPollingRate property in
the plugin properties. If the object ID refers to a multipath logical unit, this sets the
failbackPollingRate property.

Support
Optional.

See also
MP_AUTOFAILBACK_SUPPORT.

Multipath Management API Working Draft
Version 1.1
88

7.50 MP_SetProbingPollingRate

Synopsis
Set the polling rates. Setting pollingRate to zero disables polling.

Prototype
MP_STATUS MP_SetPollingRate(
/* in */ MP_OID oid,
/* in */MP_UINT32 pollingRate
);
Parameters
oid
An object ID of either the plugin or a multipath logical unit.
pollingRate

The value to be set in MP_PLUGIN_PROPERTIES currentProbingPollingRate or

MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES ProbingPollingRate.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_INVALID_PARAMETER
Returned when one of the polling values is outside the range supported by the
driver or when oid has a type subfield other than MP_OBJECT_TYPE_PLUGIN or
MP_OBJECT_TYPE_MULTIPATH_LU.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid ownerID or sequence number is invalid.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_UNSUPPORTED
Returned when the implementation does not support the API.

Remarks

If the object ID refers to a plugin, then this will set the currentProbingPollingRate property in
the plugin properties. If the object ID refers to a multipath logical unit, this sets the

ProbingPollingRate property.

Support
Optional.

See also
MP_AUTOPROBING_SUPPORT.

7.51 MP_SetProprietaryProperties

Synopsis
Set proprietary properties in supported object instances.
Prototype
MP_STATUS MP_SetPropritaryProperties (
/* in */ MP_OID oid;
/* in */ MP_UINT32 count;
/* in */ MP_PROPRIETARY_PROPERTY *pPropertylList;
);
Multipath Management API Working Draft
Version 1.1

89

Parameters

oid
The object ID representing an MP_LOAD_BALANCE_PROPIETARY_TYPE,
MP_PLUGIN_PROPERTIES, or MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES
instance.

count
The number of valid items in pPropertyList.

pPropertyList
A pointer to an array of property name/value pairs. This array shall contain the same
number of elements as count.

Typical return values

MP_STATUS_INVALID_OBJECT_TYPE
Returned when oid does not specify a valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND
Returned when oid owner ID or object sequence number is invalid.
MP_STATUS_INVALID_PARAMETER
Returned when pPropertyList is null or when one of the properties referenced in
the list is not associated with the specified object ID or oid has a type subfield
other than MP_OBJECT_TYPE_PROPRIETARY_LOAD_BALANCE,
MP_OBJECT_TYPE_PLUGIN or MP_OBJECT_TYPE_MULTIPATH_LU.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

Remarks
This API allows an application with a priori knowledge of proprietary plugin capabilities to set
proprietary properties. pPropertyList is a list of property name/value pairs. The property
names shall be a subset of the proprietary property names listed in the referenced object ID.
Support
Optional.

7.52 MP_SetTPGAccess

Synopsis

Set the access state for a list of target port groups. This allows a client to force a failover or
failback to a desired set of target port groups.

Prototype
MP_STATUS MP_SetTPGAccess (
/* in */MP_OID luOid;
/* in */ MP_UINT32 count;
/* in */ MP_TPG_STATE_PAIR *pTpgStatelList;
)
Parameters
luoid
The object ID of the logical unit where the command is sent.
count

The number of valid items in the pTpgStateList.
pTpgStateList

Multipath Management API Working Draft
Version 1.1
90

A pointer to an array of TPG/access-state values. This array shall contain the same
number of elements as count.

Typical return values

MP_STATUS_ACCESS_STATE_INVALID
Returned when the target device returns a status indicating the caller is attempting
to establish an illegal combination of access states.
MP_STATUS_FAILED
Returned when the underlying interface failed the commend for some reason other
than MP_STATUS_ACCESS_STATE_INVALID.
MP_STATUS_INVALID_OBJECT_TYPE
Returned when luOid does not specify any valid object type. This is most likely to
happen if an uninitialized object ID is passed to the API.
MP_STATUS_OBJECT_NOT_FOUND
Returned when luOid owner ID or object sequence number is invalid.
MP_STATUS_INVALID_PARAMETER
Returned when pTpgStateList is null or when one of the TPGs referenced in the
list is not associated with the specified MP logical unit or luOid has a type subfield
other than MP_OBJECT_TYPE_MULTIPATH_LU.
MP_STATUS_SUCCESS
Returned when the operation is successful.
MP_STATUS_UNSUPPORTED
Returned when the API is not supported.

Remarks

Only wvalid for devices that support explicit access state manipulation (i.e.
MP_TARGET_PORT_GROUP.explicitFailover shall be true).

This API provides the information needed to set up a SCSI SET TARGET PORT GROUPS
command. The plugin should not implement this API by directly calling the SCSI SET
TARGET PORT GROUPS command. The plugin should use the MP drivers API (e.g. ioctl) if
available.

When the caller is finished using the list it shall free the memory used by the list by calling
MP_FreeOidList.

Support
Optional.
8 Implementation compliance
An implementation of the API described in this document shall meet the following requirements.
a) Provide an entry point for each API listed in this document.
b) Implement all APIs that are listed as mandatory to implement.

c) Attempt to perform or cause the performance of all of the actions that are specified for an
APl when all parameters to that API are valid.

d) Fail an API call if the implementation is aware that one of the requirements specified for
that API cannot be satisfied.

Multipath Management API Working Draft
Version 1.1
91

9 Implementation notes

9.1 Backwards compatibility

Clients should expect that code written for an earlier version of the APl would continue to work
with newer implementations of the library and plugins. Revisions to this standard should make all
attempts to assure backwards compatibility.

If it is later discovered that this standard is not clear and existing implementations are
inconsistent, compatibility cannot be maintained. Alternatively, it may be discovered that an
existing interface lacks necessary details. The developers of this standard may need to deprecate
an interface in order to assure interoperability going forward. In these cases, the compatibility
issues are documented in this standard. A client can look at the version number in the plugin
properties to see which version of this standard the plugin implements.

9.2 Client usage notes
9.2.1 Reserved fields

Some structures in the API contain reserved fields. Clients shall ignore the values in any
reserved fields in any structures.

9.2.2 Event notification within a single client

The API interfaces for event reporting are described in 5.5. The specific implementation used to
deliver events within a client is specific to the library and/or plugin implementation. Therefore,
when a client receives an event, it shall not use the thread delivering the event for any significant
amount of time. If the work needed to respond to an event is at all significant the client should
somehow save the information needed to respond to the event and then have another thread
perform the actual work to handle the event. If a client fails to do this, it may delay the delivery of
subsequent events and it may even cause events to be lost. The method a client uses to save the
data of an event and causes another thread to respond to the event is entirely client specific.

9.2.3 Event notification and multi-threading

A client that uses the event notification APIs of the library shall also be multi-thread safe. A client
cannot assume that an event is delivered on the same thread that registered for the event, nor
can a client assume that the client created the thread used to deliver the event. The only thing a
client can assume about a thread used to deliver an event is, that it was properly initialized to use
the C runtime library.

9.3 Library implementation notes
9.3.1 Multi-threading support

Any implementation of this API, i.e. the library, shall be multi-thread safe. That is, the library shall
allow a client to safely have multiple threads calling APIs in the library simultaneously. It is the
responsibility of the library to synchronize the usage of any library resources being used by
different threads.

9.3.2 Event notification and multi-threading

A client shall be able to call any API while the client is handling an event. Therefore, the library
implementation shall not leave any resources locked while calling a client’s event handler that
would be needed if the client’s event handler called an API. Otherwise, if the client’'s event
handler did call an API, either the API would have to fail or the calling thread would deadlock
waiting for a resource.

9.3.3 Structure packing

In order to ensure compatibility between different implementations of the Multipath Management
API, it is necessary that each implementation provides header files and/or document compiler
options so that each structure is packed such that there are no padding bytes between structure
members.

Multipath Management API Working Draft
Version 1.1
92

9.3.4 Calling conventions

In order to maintain compatibility between different versions of implementations of the Multipath
Management API, it is necessary that each implementation provides header files and/or
document compiler options so that all APIs in the Multipath Management API are called using the
C calling convention.

9.4 Plugin implementation notes
9.4.1 Reserved fields

Most structures in the API contain reserved fields. Plugins shall zero out any fields that they
consider reserved.

9.4.2 Multi-threading support

Plugins shall also be multi-thread safe. A client shall be able to have multiple threads active at
anyone time. It is the responsibility of the plugin to synchronize the usage of plugin resources
being used by different threads.

9.4.3 Event notification to different clients

Timely delivery of events to clients is necessary. Therefore, vendor implementations shall not, in
any way, serialize delivery of events by plugins. It is not permissible for a vendor implementation
to allow one client to significantly delay delivery of events to any other client.

9.4.4 Event notification and multi-threading

A client shall be able to call any API while the client is handling an event. Therefore, a plugin
shall not leave any resources locked while calling a client’s event handler that would be needed if
the client’s event handler called an API. Otherwise, if the client’'s event handler did call an API,
either the APl would have to fail or the calling thread would deadlock waiting for a resource.

9.4.5 Event overhead conservation

Although not required, it is strongly recommended that the plugin and driver have a coordinated
approach to event registration that allows driver/kernel event reporting to be disabled when no
clients are registered for types of events. This minimizes kernel overhead in handling events at
times when no clients are listening for events.

9.4.6 Function names

Every plugin shall implement functions with the same name as the API functions; that is, the
common library APl method MP_GetTargetPortGroupProperties() will function as a gateway
module to parse and invoke the plugin’s MP_GetTargetPortGroupProperties() method.

Multipath Management API Working Draft
Version 1.1
93

Annex A
(informative)

Device names

A.1 General

This annex contains information on how to specify the osDeviceName field in the
MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES. Whenever possible the values used in the
fields of these structures are identical to the values used in similar structures in ANSI INCITS
386-2004 (FC-API).

A.2 Initiator port osDeviceName

In the tables below text appearing in bold shall appear in the indicated position exactly as it
appears in the sample. Text appearing in italics is a placeholder for other text as determined by
the specified operating system Initiator Port osDeviceName.

This table describes recommended values for the osDeviceName field of the
MP_INITIATOR_PROPERTIES structure.

Table A.1 — Names for the osDeviceName field

P
AlX /dev/fscsin (for an FC initiator), /dev/iscsin (for an iSCSI initiator)
HP-UX /dev/tdn, /dev/fcdn
Linux /dev/name
Solaris /devices/name
Windows WAScsin:

A.3 Logical unit osDeviceName

This table describes recommended values for the osDeviceName field of the
MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES structure.

Table A.2 — Names for the osDeviceName

Operating Value
System _ _
Disk/Optical CD-ROM Tape Changer
Multipath Management API Working Draft

Version 1.1
94

AIX

HP-UX

Linux

Solaris

Windows

/dev/hdiskn (disk)
or
/dev/omdn (optical)

/dev/dsk/cxtydz
/dev/sdn
/dev/rdsk/cxtydzs2

WAPHYSICALDRIV
En

Multipath Management API

/dev/cdn

/dev/dsk/cxtydz
/dev/srn
/dev/rdsk/cxtydzs2

\WACDROMnN
A0 . 1../ICDROMnN

Working Draft
Version 1.1

/dev/rmtn

/dev/rmt/nm

/dev/stn

/dev/rmt/nn

WATAPEN

Empty string

Empty string
Empty string

Empty string

\WACHANGERN

95

Annex B
(informative)

Synthesizing target port groups

If the plugin/driver is supporting a device does not implement the ISO/IEC 14776-453 (SPC-3)
target port group access interfaces, the plugin/driver should synthesize target port groups.This
annex describes how a plugin/driver will implement this behavior. It is assumed that the driver
knows device-specific multipath interfaces.

Consider an asymmetric access RAID array with two RAID controllers, each having one port. The
steady-state configuration is that some (multipath) logical units are assigned (i.e. optimized) to
each controller (which is one-to-one with a port in this example) and that hosts should access
those logical units exclusively through the port on the assigned controller.

The device logical units and ports map directly to APl path logical units and target ports. In
addition, the plugin/driver should synthesize four target port groups. The logical units optimized
for one particular port are attached to a target port group in Active/Optimized state.

Target Port Target Port

[

| —
Target Port Group HE Multipath H Target Port Group
Logical Unit Wﬂ
AccessState: Optimized B AccessState: Standby
Target Port Group Multipath Target Port Group
Logical Unit 1
AccessState: StandBy o AccessState: Optimized

Figure B.1 — Synthetic target port groups

In the case of a hardware-initiated failover or a manual failover (MP_SetTPGAccess) that
effectively disables a port, the AccessState changes for both target port groups associated with
one port. The table below summarizes the access state changes.

Old state New state
Active/Optimized Standby
Active/Non-optimized Standby
Standby Active/Non-optimized

In the case of a manual failback (MP_SetTPGAccess) to reestablish the steady-state
configuration, the states should be changed as depicted in Figure B.1.

Target port groups should be associated with multiple logical units that share the same access
state for the associated ports. In other words, the plugin/driver should not synthesize separate
target port groups for each logical unit. In other words, MP_GetAssociatiatedTPDOidList should

Multipath Management API Working Draft
Version 1.1
96

return the same list of object IDs for all multipath logical units that share the same access states
through the same target ports.

If the plugin/driver knows through vendor-specific interfaces that a target device has symmetric
logical unit access, it should synthesize a single target port group associated with all logical units
and target ports, with access state set to active/optimized.

Multipath Management API Working Draft
Version 1.1
97

Annex C
(informative)

Transport layer multipathing

SAS and iSCSI allow multiple physical ports to be aggregated into a virtual SCSI port. This
provides a multipath capability at a lower layer than the capabilities in this API. Each approach
has advantages.

Transport-layer multipathing has simpler management capabilities because all LUNs on a
target share the same path configuration. Path switching tends to be more efficient at the
transport layer than at the higher SCSI layers described in this API.

SCSl-layer multipathing (as described in this APl applies to all SCSI transports and allows
failover and load-balancing across transports (for example, an array with FC and iSCSI ports
could support failover from FC to iSCSI). SCSl-layer multipathing allows per-LUN
configuration.

This standard does not address transport-layer multipathing. Transport-specific management
interfaces may be available. There may be cases where both layers of multipathing are available
on the same system. As used in this standard, the term “port” applies to the aggregated, virtual
port in configurations with transport-layer multipathing.

Multipath Management API Working Draft

Version 1.1
98

Annex D
(informative)

Coding examples
D.1 General

This annex contains samples of how to use the Multipath Management API. All of these examples
are non-normative; if there is a discrepancy between these examples and anything in any of the
previous subclauses of this document the examples should be considered incorrect and the
previous subclauses correct.

One note about the examples: the examples will all perform error detection; however they will not
perform error reporting. This is an exercise left to the reader.

There are three coding examples. They are:
a) example of getting library properties;
b) example of getting plugin properties; and

c) example of discovering path LUs associated with an MP LU.

D.2 Example of getting library properties

//

// This example prints the properties of the MP library.
//

MP_STATUS status;

MP_LIBRARY_PROPERTIES props;

//
// Try to get the library properties. If this succeeds then print
// the properties.
//
status = MP_GetLibraryProperties(&props);
if (Status == MP_STATUS_SUCCESS)
{
printf(“Library Properties:\n”);
printf(“\tMP version: %u\n”,

(unsigned int) props.implementationVersion);
printf(L“\tVendor: %s\n”, props.vendor);
wprintf(L“\tImplementation version: %s\n”,

props.implementationVersion);
printf(L“\tFile name: %s\n”, props.fileName);
printf(“\tBuild date/time: %s\n”, DateTime(&props-buildTime));

}

D.3 Example of getting plugin properties

//

// This example gets the properties of the first plugin returned by
// the library.

//

MP_STATUS status;

MP_OID_LIST *pList;

Multipath Management API Working Draft
Version 1.1
99

//
// Get the list of plugin IDs.
//
status = MP_GetPluginOidList(&pList);
if (Status == MP_STATUS_SUCCESS)
{
//
// Make sure there’s a plugin to get the properties of.
//
if (pList->o0idCount !'= 0)

MP_PLUGIN_PROPERTIES props;

status = MP_GetPluginProperties(pList->0ids[0], &props):;

if (Status == MP_STATUS_SUCCESS)

{
printf(“Plugin Properties:\n”);
printf(“\tMP version: %u\n”, props.supportedMpVersion);
wprintf(L“\tVendor: %s\n”, props.vendor);
wprintf(L“\tImplementation version: %s\n”,

props.implementationVersion);

printf(L“\tFile name: %s\n”, props.fileName);
printf(“\tBuild date/time: %s\n”, DateTime(&props.buildTime))

}

}

//
// Always remember to free an object ID list when it’s no longer
// needed. Failing to do so will cause memory leaks.
//
MP_FreeOidList(pList);
}

D.4 Example of discovering path LUs associated with an MP LU

//

//

// This example prints the name of each multipath logical unit,
// then prints information about each path.

//

MP_STATUS status;

MP_OID_LIST *lulist, *plist;

MP_UNIT32 lu_num, path_num;
MP_MULTIPATH_LOGICAL_UNIT_PROPERTIES luProps;
MP_PATH_LOGICAL_UNIT_PROPERTIES pProps;
MP_TARGET_PORT_PROPERTIES tProps;
MP_INITIATOR_PORT_PROPERTIES iProps;

// Assume we’re just operating against one plugin — its
// OID is magically known..

MP_OID pluginOid = xxXx;

//

// Get a list of the object IDs of all of the multipath LUs in the
// system.

//

status = MP_GetMultipathLus(pluginOid, &lulist);

if (status == MP_STATUS_SUCCESS)

Multipath Management API Working Draft
Version 1.1

100

//
// For each MP LU, first display some properties, and then get paths
//
mp_num = O;
while (lu_num <= lulist->0idCount)
{
status = MP_GetMPLogicalUnitProperties(lulist->oids[lu_num],
&luProps);
// assume status ok for the example..
printf (L“0OS Device %s LU ID %s\n”, luProps.deviceFilename,
luProps.name);
status = MP_ GetAssociatedPathOidList(lulist->oids[lu_num],
&plist);
// assume status ok
path_num = 0;
while (path_num < plist->0idCount)

status = MP_GetPathLogicalUnitProperties(
plist->oids[path_num], &pProps);

MP_GetlnitiatorPortProperties (
pProps.initiatorPortOid, iProps);

status = MP_GetlnitiatorPortProperties (

pProps.targetPortOid, tProps);

printf(L“ Initiator: %s Target: %s\n”,
iProps.name, tprops.name);

MP_FreeOidList(plist);

path_num++;

status

}

lu num++;

}
MP_FreeOidList(lulist);
}

D.5 Example of getting statistics on a path logical unit

// Example for processing statistics data.

MP_PATH_LOGICAL_UNIT_STATISTICS statsl, stats2;

MP_OID patLuOid;
MP_UINT32 sleepTime;
MP_STATUS status;

// Assume the pathLUOId is assigned with an instance of a path
// logical unit.

status = MP_GetPathLogicalUnitStatistics(pathLUOid, &statsl);
if (MP_STATUS_SUCCESS == status) {

// Assume the associated multipathing support provides data operation
// related statistics.

printf('Statistics Data from first call: \n");
printf("'Read Ops\t Write Ops\t Read Bytes\t Write Bytes\n');

Multipath Management API Working Draft
Version 1.1
101

printf("'---—————- \t ————————- \t —————————- \t ——————————- \n");
printfC'%811d\t %811d\t %811d\t %811d\n", statsl.readOps,
statsl.writeOps, statsl.readBytes, statsl.writeBytes);

} else {
// handle an error
return;

}

// Assume sleepTime is assigned a value already.

sleep(sleepTime);
status = MP_GetPathLogicalUnitStatistics(pathLUOid, &stats?);
if (MP_STATUS_SUCCESS == status) {

// Assume the associated multipathing support provides data operation
// related statistics.

printf('Statistics Data from second call: \n");

printf("'Read Ops\t Write Ops\t Read Bytes\t Write Bytes\n");

printf("-——-—--—- \t ————————- \t —————————— \t ——————————— \n");

printf('%811d\t %811d\t %811d\t %811d\n", stats2.readOps,
stats2._writeOps, stats2.readBytes, stats2.writeBytes);

} else {
// handle an error
return;

3

// Assume statsl.timeUnit and stats2.timeUnit are set to MP_MILLISEC.
printf(""'Sampling data over %lld milliseconds:\n",

stats2_snapTime - statsl.snapTime);
printf("'Read Ops\t Write Ops\t Read Bytes\t Write Bytes\n');
printf("%811d\t %811d\t %811d\t %811d\n",

stats2.readOps - statsl.readOps, stats2.writeOps - statsl.writeOps,

stats?2._readBytes - statsl.readBytes, stats2._writeBytes -
statsl.writeBytes);

D.6 Example of getting distributed statistics on a path logical unit

// Example for processing distributed statistics data.

MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS *stats;

MP_OID pathLUOiId;
MP_UINT32 sleepTime;
MP_STATUS status;

int count = 8;

// Assume the pathLUOiId is assigned with an instance of a path logical unit
// and the stats buffer is allocated with the size to hold 8 buckets.

stats = (MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS *) calloc(d,
sizeof(MP_PATH_LOGICAL_UNIT_DISTRIBUTED_STATISTICS) +

Multipath Management API Working Draft
Version 1.1
102

((sizeof(MP_STATISTICS_BUCKET)) * (count - 1)));

// Store the count to bucketCount field to indicate the size of stats
// buffer.

stats->bucketCount = count;

status = MP_GetPathLogicalUnitDistributedStatistics(pathLUOid,
MP_STATISTICS_DATA_TYPE_RESPONSE_TIME, stats);

if (MP_STATUS_SUCCESS == status) {

// Assume the multipathing support also provides 8 buckets of
// distributed statistics.

upper_bound = 0;
printf(""1/0 Response Data from first call: \n");
printf("’'Response time \tCount of 1/0s\n"");

for (i = 0; i < stats->bucketCount; i++) {
lower_bound = upper_bound;
upper_bound = stats->bucket[i].boundary;
printf("">%-511d and <= %-5101d \t%lld\n", lower_bound,

upper_bound, stats->bucket[i].count);
}
} else {
// handle an error
return;

}

// Assume sleepTime is assigned a value already and stats buffer is
// cleared with Os.

sleep(sleepTime);
status = MP_GetPathLogicalUnitDistributedStatistics(pathLUOid,
MP_STATISTICS_DATA_TYPE_RESPONSE_TIME, stats);
if (MP_STATUS_SUCCESS == status) {
upper_bound = 0;
printf(""1/0 Response Data from second call: \n");
printf("'Response time \tCount of 1/0s\n"");

for (i = 0; i < stats->bucketCount; i++) {
lower_bound = upper_bound;
upper_bound = stats->bucket[i]-boundary;
printf("">%-511d and <= %-5101d \t®%lld\n", lower_bound,

upper_bound, stats->bucket[i].count);
}
} else {
// handle an error
return;

Multipath Management API Working Draft
Version 1.1
103

Annex E
(informative)
Library/plugin API

This annex describes the required interfaces between the library and the plugins for OS-
independent implementations.

The common library shall assure that each plugin is given a unique plugin ID. This is the second
field (ownerID) in an Object ID as described in 5.7.3.

In most cases, the common library will use the ownerID of an object provided by the caller to
determine which plugin owns the object, and then will dynamically invoke that function in the

plugin.
The common library should provide the following APIs without invoking plugins:
e MP_CompareOIDs
e MP_FreeOidList
e MP_GetLibraryProperties
e MP_GetPluginOidList
e MP_GetAssociatedPluginOid
e MP_GetObjectType
e MP_RegisterPlugin
e MP_DeregisterPlugin
Each plugin shall provide the following two functions:
e Initialize() - Provided by the plugin to address any initialization tasks.
e Terminate() - Provided by the plugin to address any termination tasks.

These are not used by client applications. They are exclusively used by the common library as
part of dynamically loading and unloading plugins.

Multipath Management API Working Draft
Version 1.1
104

Annex F
(normative)

Bibliography

Infiniband Architecture Specification Volume 1 Release 1.1, November 2002

NOTE - Copies of Infiniband standards may be obtained through the Infiniband Trade Organization (IBTA) at
http://www.infinibandta.org.

Multipath Management API Working Draft
Version 1.1
105

