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What this talk is about 

Trying to answer the question: What does it take for an 
in-memory database to out-compete a disk based 
database on all storage-related metrics? 
Our experience with Persistent Main Memory for In-
Memory Databases 
 
Talk Outline: 
Definitions and terms 
Transaction log in persistent main memory 
Impact on database high availability 
Checkpoint, recovery and very large databases 
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In-memory databases 

Database engines that take advantage of large memory 
Store all/most of the data in DRAM – basis for perf gains 
 
In-memory data representation != on disk representation 
Fully integrated with Sql Server (transactions, logging) 
No buffer pool, no dirty writes, no locks/latches/blocking 
Does not compromise on ACID properties: 

Atomicity 
Consistency 
Isolation 
Durability (logging and checkpoint) 

Up to 30X performance gains on important workloads 
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Memory-Optimized Tables 
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90,150 Susan Bogota 

50, ∞ Jane Prague 

100, 200 John Paris 

70, 90 Susan Brussels 

200, ∞ John Beijing 

Timestamps Name Chain ptrs City 

Hash index on City 
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• Row can be part of multiple indexes, but there is only a single copy 
• Each row version has a valid time range indicated by two timestamps 
• A version is visible if transaction read time falls within the version’s valid time 
• Garbage collection of versions: incremental, parallel, non-blocking, cooperative 

Row format 

BW-tree index on Name 
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Direct Access, Multi-Version, Lock-Free Transactions  

50, ∞ John Paris 

Timestamps Name Chain ptrs City 

Hash index 
on Name 

Transaction 100:  
UPDATE City = ‘Prague’ where Name = ‘John’ 
No locks of any kind, no interference with transaction 99 

100, ∞ John Prague 

90, ∞ Susan Bogota 

f(John) 
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Transaction 99: Running compiled query 
SELECT City WHERE Name = ‘John’ 
Simple hash lookup returns direct pointer to ‘John’ row 

Background operation will unlink and deallocate the old 
‘John’ row after transaction 99 completes. 
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PMM Log 

Use byte-addressable log implementation 
Using Windows DirectAccess filesystem capability 
Compared with the ideal block mode access device 
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PMM Log – *Not* TPCC, 2S 
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PMM Log - Implementation 

Add-on over the Sql Log Manager 
1:1 relationship between existing log staging area (LC) 
and new PMM log store memory 
Adding a log record (algorithm outline): 

Obtain LSN 
Copy to existing LC slot and then copy to PMM 
Atomically attach PMM log record to PMM log store 
If log record is a transaction commit, cl-flush PMM log records 

Surprise: Increased throughput with longer code path! 
IO path is shorter; IO blocks are larger; lazy commit behavior 

No free lunch: Recovery needs to account for “holes” 
Still very simple – just move content from PMM to regular log 9 
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Impact on High Availability 

Sql Server HA: send log blocks to secondary replicas 
PMM log side-effect: larger (and slower) block creation 
Solution: Send content on the tx commit path as well 

 
 
 
 
 
 
• Consequences: double the network traffic 
• Add roughly 25us of latency to transaction commit 
• Which does not translate into loss of throughput (context-free work is valuable) 
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Filegroup (filestreams) 

Hekaton checkpoint and recovery 
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Hekaton Checkpoint 

Fully parallel at both creation and recovery time 
Scalable and high throughput: 1G/second, external limit 
Fully integrated with Sql: encryption, backup/restore, IO 
resource governance, space management, etc. 
Can be produced from log stream alone (remote-able) 
 
Loading 1TB of data is slow, regardless of parallelism 

Assume IO at 1G/s leads to 1000s (~17min) recovery time 

Many indices and fast IO can make it appear slower 
This is where in-memory DB has had an inherent 
disadvantage! 
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What to do? O(N) attempt… 

Sort rows before loading them. 
 
 
 
 
 
 
 
 
Results in significant time reduction, but still O(N). 
We want constant time recovery instead. 
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What to do? O(1) attempt… 

Introduce GenerationEra – incremental value which 
tracks new instances of the host process lifetime. 
Every object is marked with its GenerationEra. 
Differentiate between ‘visibility’ and ‘reachability’. 
Analyze each container: heap, bw-tree index, hash 
index, free lists to identify object lifetime. 
Use a mark and sweep approach to move eligible old-
era items to the current era’s freelist. 
Sweep happens in parallel with DB becoming available. 
Result: DB is available in small constant time. 
Insight: Requires hardware support for ‘reachability’. 
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