
PRESENTATION TITLE GOES HERE Cristian Diaconu
Microsoft

 Microsoft SQL Hekaton – Towards Large Scale

Use of PM for In-memory Databases

JANUARY 20, 2016, SAN JOSE, CA

What this talk is about

Trying to answer the question: What does it take for an
in-memory database to out-compete a disk based
database on all storage-related metrics?
Our experience with Persistent Main Memory for In-
Memory Databases

Talk Outline:
Definitions and terms
Transaction log in persistent main memory
Impact on database high availability
Checkpoint, recovery and very large databases

2

In-memory databases

Database engines that take advantage of large memory
Store all/most of the data in DRAM – basis for perf gains

In-memory data representation != on disk representation
Fully integrated with Sql Server (transactions, logging)
No buffer pool, no dirty writes, no locks/latches/blocking
Does not compromise on ACID properties:

Atomicity
Consistency
Isolation
Durability (logging and checkpoint)

Up to 30X performance gains on important workloads
3

Memory-Optimized Tables

4

90,150 Susan Bogota

50, ∞ Jane Prague

100, 200 John Paris

70, 90 Susan Brussels

200, ∞ John Beijing

Timestamps Name Chain ptrs City

Hash index on City

B
P

• Row can be part of multiple indexes, but there is only a single copy
• Each row version has a valid time range indicated by two timestamps
• A version is visible if transaction read time falls within the version’s valid time
• Garbage collection of versions: incremental, parallel, non-blocking, cooperative

Row format

BW-tree index on Name

J

S

Direct Access, Multi-Version, Lock-Free Transactions

50, ∞ John Paris

Timestamps Name Chain ptrs City

Hash index
on Name

Transaction 100:
UPDATE City = ‘Prague’ where Name = ‘John’
No locks of any kind, no interference with transaction 99

100, ∞ John Prague

90, ∞ Susan Bogota

f(John)

10
0

Transaction 99: Running compiled query
SELECT City WHERE Name = ‘John’
Simple hash lookup returns direct pointer to ‘John’ row

Background operation will unlink and deallocate the old
‘John’ row after transaction 99 completes.

What this talk is about

Trying to answer the question: What does it take for an
in-memory database to out-compete a disk based
database on all storage-related metrics?
Experience with Persistent Main Memory for In-Memory
Databases

Talk Outline:
Definitions and terms
Transaction log in persistent main memory
Impact on database high availability
Checkpoint, recovery and very large databases

6

PMM Log

Use byte-addressable log implementation
Using Windows DirectAccess filesystem capability
Compared with the ideal block mode access device

7

PMM Log – *Not* TPCC, 2S

8

PMM Log - Implementation

Add-on over the Sql Log Manager
1:1 relationship between existing log staging area (LC)
and new PMM log store memory
Adding a log record (algorithm outline):

Obtain LSN
Copy to existing LC slot and then copy to PMM
Atomically attach PMM log record to PMM log store
If log record is a transaction commit, cl-flush PMM log records

Surprise: Increased throughput with longer code path!
IO path is shorter; IO blocks are larger; lazy commit behavior

No free lunch: Recovery needs to account for “holes”
Still very simple – just move content from PMM to regular log 9

What this talk is about

Trying to answer the question: What does it take for an
in-memory database to out-compete a disk based
database on all storage-related metrics?
Experience with Persistent Main Memory for In-Memory
Databases

Talk Outline:
Definitions and terms
Transaction log in persistent main memory
Impact on database high availability
Checkpoint, recovery and very large databases

10

Impact on High Availability

Sql Server HA: send log blocks to secondary replicas
PMM log side-effect: larger (and slower) block creation
Solution: Send content on the tx commit path as well

• Consequences: double the network traffic
• Add roughly 25us of latency to transaction commit
• Which does not translate into loss of throughput (context-free work is valuable)

11

LOG

Log
Cache

PMM

Log Block

LOG

Log
Cache

Primary Secondary

LOG

Log
Cache

Log Block

LOG

Log
Cache

Primary Secondary

PMM Tx Block

What this talk is about

Trying to answer the question: What does it take for an
in-memory database to out-compete a disk based
database on all storage-related metrics?
Experience with Persistent Main Memory for In-Memory
Databases

Talk Outline:
Definitions and terms
Transaction log in persistent main memory
Impact on database high availability
Checkpoint, recovery and very large databases

12

Memory-optimized
Filegroup (filestreams)

Hekaton checkpoint and recovery
Checkpoint Recovery

Ra
ng

e
10

0-
19

9

Ra
ng

e
20

0-
29

9

Ra
ng

e
30

0-
39

9

Data file with rows inserted in
timestamp range a-b

 Delta file with IDs of deleted
rows

Memory

Memory

SQL
Log

Lo
g

Memory-optimized
Filegroup

SQL
Log

Lo
g

 Redo Do

Checkpoint

Ra
ng

e
10

0-
19

9

Ra
ng

e
20

0-
29

9

Ra
ng

e
30

0-
39

9

Filter Filter Filter

Rows and Indexes Rows and Indexes

Key

Microsoft Confidential 13

Hekaton Checkpoint

Fully parallel at both creation and recovery time
Scalable and high throughput: 1G/second, external limit
Fully integrated with Sql: encryption, backup/restore, IO
resource governance, space management, etc.
Can be produced from log stream alone (remote-able)

Loading 1TB of data is slow, regardless of parallelism

Assume IO at 1G/s leads to 1000s (~17min) recovery time

Many indices and fast IO can make it appear slower
This is where in-memory DB has had an inherent
disadvantage!

14

What to do? O(N) attempt…

Sort rows before loading them.

Results in significant time reduction, but still O(N).
We want constant time recovery instead.

15

What to do? O(1) attempt…

Introduce GenerationEra – incremental value which
tracks new instances of the host process lifetime.
Every object is marked with its GenerationEra.
Differentiate between ‘visibility’ and ‘reachability’.
Analyze each container: heap, bw-tree index, hash
index, free lists to identify object lifetime.
Use a mark and sweep approach to move eligible old-
era items to the current era’s freelist.
Sweep happens in parallel with DB becoming available.
Result: DB is available in small constant time.
Insight: Requires hardware support for ‘reachability’.
 16

Credits

Paul Larson, Bob Fitzgerald, Ildar Absalyamov – MSR
Sridharan Sakthivelu – Intel
Hekaton Engine Team – Microsoft Sql Server

17

	Slide Number 1
	What this talk is about
	In-memory databases
	Memory-Optimized Tables
	Direct Access, Multi-Version, Lock-Free Transactions
	What this talk is about
	PMM Log
	PMM Log – *Not* TPCC, 2S
	PMM Log - Implementation
	What this talk is about
	Impact on High Availability
	What this talk is about
	Hekaton checkpoint and recovery
	Hekaton Checkpoint
	What to do? O(N) attempt…
	What to do? O(1) attempt…
	Credits

