STORAGE INDUSTRY

Convergence of Storage and Memory Developing the Needed Ecosystem

JANUARY 20, 2016, SAN JOSE, CA

Edward Sharp PMC-Sierra Chief Strategy & Technology Officer NVM Changes the Computing Stack / Who Cares about NVM?

The Opportunity ahead

Categories of NVM

Category	Characteristics
DRAM "Drop-in"	Fast, but expensive Byte addressable Memory interface SuperCap replacement
Storage Class Memory (SCM)	Cheaper, but slower, than DRAM Byte addressable Block and Memory interfaces
NAND Flash	Cheap and relatively slow Block interface

We are gathered here because we believe in the value of low latency

NVM delivers low latency and high throughput

Category	Latency (usec)	IOPS	Bandwidth (MB/s)
DRAM "Drop-in"	10 ⁻¹	10 ⁹	104
Storage Class Memory (SCM)	10	10 ⁷	I 0 ⁴
NAND Flash	10 ²	10 ⁶	10 ³
HDDs	104	10 ²	10 ²

To make this happen we've all been working on multiple fronts

- Media
- Controllers
- Networks
- CPU architectures
- OS

Product	Vendors	Medium	Comments
NVDIMM	Micron Agiga Netlist	DRAM (with Flash)	DRAM performance and price
UltraDIMM	SanDisk/ Smart/ Diablo	NAND	Poor adoption NAND too slow for good performance
Optane DIMM	Intel	3DX	SkyLake Xeon (2017)

Intel Optane – NVM Express and DIMM form-factors

- Faster (than NAND)
- Denser (than DRAM)
- Cheaper (than what)??

Congratulations – New Controllers

1M IOPS

- >20TB capacity
- Next generation ECC LDPC
- SW-Defined-Flash (SDF) interface

SCM can improve latency an order of magnitude over NAND

A proxy for a NG-NVM based SSD!

Low latency and great QoS!

Latency, us

Congratulations – NVMe delivers ~10 times throughput

IOPS per Hardware Thread

Congratulations – NVMe Latency half that of SATA

Congratulations – PCle Storage Switch

Congratulations – RDMA scales latency benefit

- NVM Express support
- NVMe over Fabrics support
- Persistent MEMory (PMEM) support
- mmap()-able NVM either in NVDIMM or PCIe form-factor
- Heterogeneous Memory Types

vmware[®]

sola

To make this happen we've all been working on multiple fronts

- Media NAND, PCM, 3DX, ST-MRAM
- Controllers PCIe, NVM Express; LDPC
- Networks 25/50/100Gbe Ethernet, RDMA, NVM Express over Fabrics
- CPU architectures Optane, NUMA
- OS blk-mq, polling, NVM Express

What Next? SCM

Media

- SCM
- Controllers
 - SCM, Fabric support, Near data processing

Networks

RDMA, NVMe over Fabrics

CPU architectures

- Enable Controller Memory Buffers (CMBs) for NVMe
- Standardize PMEM access over PCIe
- RDMA into SCM support

OS

- NVMe over Fabrics & RDMA into SCM support
- Make OS aware of heterogeneous memory types
- Management

Most people don't care

Different priorities, too much trouble, fear, resources

But who cares? The Application

Computing Stack
Application
Compute
Memory
ΙΟ
Storage

We've made all the building blocks fast – but do the applications care?

Layer	Customer needs		
Application	Serve business goals	Simple, Efficient, Fast (enough)	
Compute	Serve application / workload	Efficient, Fast	
Memory	Serve compute	Fast, BW	
IO	Connect to data	Latency, BW, Efficient	
Storage	Available for application	Efficient, Fast, Scale, Reliable	

Applications historically designed for HDD performance

OTLP

Virtualized Apps

Backup & Archive

Media

Big Data / Machine Learning Microsoft

vmware[®]

NVM excelled where no SW changes are needed, removing HDD latency

NVM as Memory

Software Changes

NVM as Cache

No Software Changes

NVM as Capacity

No Software Changes

Initially workload specific Huge performance gains from little Flash (10%)

TCO Battleground with HDD

Niche Mainstream 2020? Mainstream Took about 10Yrs Niche Mainstream 2020?

Database Example Savings from fewer licenses – NAND as Disk

Solid State Storage Initiative

What does more performance (than NAND) deliver to legacy apps?

NAND Flash (and HDDs) deliver low cost

Category	Latency (usec)	\$/GB
DRAM "Drop-in"	10 ⁻¹	10 ¹
Storage Class Memory (SCM)	10	10 ⁰
NAND Flash	10 ²	10 ⁻¹
SMR	104	I 0 ⁻²

But who cares? **New Applications** Solid State Storage Initiative ଭ SwiftStack Windows Server 2012 ceph **Storage Spaces** SDS Red Hat **Broad Market** VMware Virtual SAN Canonical SuSe openstack[™] **JaaS Bare Metal SDS** Hyper-Converged SDS **Big Data Frameworks HDFS** In-Memory Transactional **NoSQL** Flash as Cache Flash as Cache Flash as Memory Flash as Memory Flash as Cache Flash as Cache \bigcirc Spark cloudera mongoDB ceph Cassandra Scale 0 Hortonworks redis CouchDB MAPR **∢EROSPIKE** IBM Cloudant

Big Data Example Aerospike NoSQL DB – NAND as Memory

Servers, with storage, needed for 0.5M TPS on Aerospike Database with SSDs vs. NoSQL with DRAM only

Get Real

Real-Time creates an arms race for low and deterministic latency

Engage with SW Ecosystem

Engage with application ecosystem

- Promote performance apps: Real-time
- Solve Price-performance challenge with NVM
- Help applications take advantage of performance
- SW defined NVM: Flexibility
- Learn what is coming

Linux Shows us the Way OSes not accustomed to persistence on memory channel

Changes to OS tell us what is coming

Computing Stack
Application
Compute
Memory
ΙΟ
Storage