
Ethan L. Miller
Symantec Presidential Chair in Storage & Security

University of California, Santa Cruz

Rethinking Benchmarks for 
Non-Volatile Memory 

Storage Systems



❖ Understand storage system limitations
• Feed into storage system development

❖ Compare storage systems to one another

❖ Predict performance in your environment

Why benchmark storage?

2



3

But we have lots of benchmarks!

fio
SPC-1

PostMark

iozone

bonnie
vdbench

YCSB

TPC

TPC-x

iometer
…and many more!



❖ Location: where are the requests?
• And where are they relative to other requests?

❖ Size: how big are the requests?
• Constant / variable?

❖ Access type: what kind of requests (read/write/other)?
• Block vs. file

❖ Content: what data is in the requests (for writes)?
• This can be very tricky!

❖ Timing: when are the requests?
• Start time vs. interval

❖All of these can be different for NVM!

What makes a benchmark?

4



❖ Disk-based systems: location really matters!
• Seek times are location-dependent
• Virtualized storage can muddle this

❖ NVM: location shouldn’t matter, right?
• Location in NVM doesn’t determine latency
• NVM storage is even more highly virtualized anyway!

Location, location, location

5



❖ Access order impacts NVM-based data structures
• Number of copies / invalidations for copy-on-write and write-out-of-

place structures can differ
• More overwrites ➡ more garbage collection

❖ More invalid copies ➡ more accesses on reads

❖ Example: preloading storage system with data
• Standard approach: write data sequentially

• May be “best case” for copy-on-write systems
• This isn’t realistic!

• Better (realistic) approach: write and overwrite data in “patches”
• Better reflection of reality 
• More fragmentation

Access location & NVM

6



❖ Disk: sequential I/O is significantly faster than random

❖ NVM: I/O size is less important
• Each I/O pays one overhead
• Larger I/Os might pay additional cost due to internal structures

❖ Example: single 128KB I/O vs. 16 8KB I/Os
• Log-structured system: might be able to read entire 128KB 

sequentially
• But not if there was significant overwrite, scattering data

• Content-addressable system: relatively faster for many smaller I/Os
• Forces log-structured system to pay the same overheads it already does

• Compression: alters boundaries

Size matters

7



❖ Disk-based systems are either block or file-based
• Blocks: little or no lookup time
• Files: lots of extra overhead on operations

❖ NVM-based systems are likely to be byte or object-based
• Byte-level operations: very small, very fast: expect millions to billions 

per second
• Object-based operations: less overhead than file-based: still may 

have millions per second

Access type: blocks vs. objects

8



❖ Disk: content doesn’t matter that much
• Disk systems can use compression and deduplication, but most don’t
• Why bother “increasing” capacity when IOPS matter more?
• Even worse, compression & deduplication decrease performance
• Result: content isn’t as important for disk systems

❖ NVM is different!
• Expensive: data reduction reduces cost
• Very fast: performance implications of data reduction are minimal
• Data reduction is very content-dependent

Content is king

9



❖ Data must be compressible, but not too much
• Typical data compresses at 2:1–4:1
• Different algorithms compress in different ways
• Benchmark must generate data that compresses in the same way 

user data does

❖ Potential benchmark approaches
• Reuse sampled data from deployed systems?
• Generate data that matches that from deployed systems?

Compressing content

10



❖ NVM-based systems reduplicate heavily
❖ Benchmarks need to mirror real-world systems’ duplicate 

data patterns
• Fraction of deduplicated data
• Layout of deduplicated data
• Access pattern (write order) needs to match as well

• Detection of duplicates can be order-dependent
❖ Example: deduplication & VMs

• Writing VMs sequentially can result in less deduplication than writing 
VMs in parallel

• Using XCOPY (as real-world systems likely would) can be more 
efficient

• Minor data rearrangement matters: on what boundary is deduplication 
detected?

Deduplicating content

11



❖ Timing at which I/Os are issued determine performance
• Typical approach: multiple threads issue as quickly as possible

• Performance determined by the number of threads
• Problem: faster systems issue I/Os faster

• This isn’t always realistic

❖ Better approach: determine timing from start-to-start
• I/Os issued at a fixed rate

• Or, follow a given inter-arrival distribution
• Rate itself may vary over time!

• Faster systems aren’t penalized
• Important for NVM systems that can run at 1,000,000+ IOPS!

Time is of the essence

12



❖ Disk-based systems are speed limited
• 1000 disks only runs at 200,000 IOPS

❖ NVM-based systems are much faster
• Millions of IOPS!
• Benchmarks need to keep up!

❖ Issuing requests at over 1M/second is challenging for a 
single system
• Using multiple cores and threads helps, but…
• Coordinating multiple threads is difficult, especially if the benchmark 

needs to be repeatable

Speed kills

13



❖ Often useful to be able to re-run the benchmark
• Repeatable results
• Regenerate the same data later

❖ Requires deterministic random numbers
• Straightforward: any DRNG will work if all threads cooperate properly
• Problem: coordinating threads is difficult

❖ Threads need to use random numbers in a fixed order
• Centralized RNG may work
• Need to ensure that threads use the numbers in the same order each 

time
• Better approach: one thread generates workload while worker 

threads consume it

Repeatability

14



❖ Benchmarks are supposed to mirror real workloads

❖ We don’t yet know how applications will use NVM-based 
storage with microsecond latency!
• Memory-like access?
• Object / variable-sized chunk access?

❖ Big question: what will the access pattern look like?
• Different characteristics enable different application access patterns
• What will applications do with 1M+ IOPS?

❖ This will have one of the largest impacts on benchmarks

The elephant in the room: 
overall workload

15



❖ Benchmarks need to be more accurate
• NVM-based system performance will be more dependent on the 

software that manages them
• GIGO: if the benchmark doesn’t mirror real-world conditions, system 

designers may be optimizing for the wrong thing
❖ Benchmarks need to be faster

• Need to support 2M+ IOPS for a single benchmark
❖ Benchmarks need to be deterministic

• “Random” is helpful, but we need repeatability

❖ Achieving all of these goals will be difficult

Implications for benchmarks

16



17

Questions?

elm@cs.ucsc.edu


