STORAGE INDUSTRY

Convergence of Storage and Memory Developing the Needed Ecosystem

JANUARY 20, 2016, SAN JOSE, CA

Rick Coulson Intel Sr. Fellow

3D XPoint[™] Technology Drives System Architecture

The Latency Journey So Far

New Media Enables the Next Step

A little about 3D XPoint[™] Technology

System and SW Architecture Changes In Process

- Changes to Block Storage Stack to Minimize Latency
- Changes to Enable Persistent Memory

Starting Point: The First HDD

1957 IBM RAMAC 350 5 MBytes \$57,000 \$15200/Mbyte ~1.5 Random IOPs

*Other names and brands may be claimed as the property of others

Why the Drive for Low Latency?

RAMAC 350 600ms

Platform HW / SW bottlenecks

Media Enabler: 3D XPoint[™] Technology (Or any SCM)

Crosspoint Structure

Selectors allow dense packing and individual access to bits

Scalable Memory layers can be stacked in a 3D manner

Breakthrough Material Advances

Compatible switch and memory cell materials

High Performance Cell and array architecture that can switch states 1000x faster than NAND

Video here

3D XPoint[™] Technology Instantiation

DIMMs based on 3D

Demonstration of 3D Xpoint[™] SSD Prototype

The Need to Address System Architecture

Storage Enabler: NVMe Efficiency Exposes Low 3D XPoint[™] Media Latencies

NVMe Delivers Superior Latency

Source: Storage Technologies Group, Intel

NVMe/PCIe Provides More Bandwidth

Enabler: NVMe Over Fabrics

- In most Datacenter usage models, a storage write does not "count" until replicated
- ◆ High replication overhead diminishes the performance differentiation of 3D XPoint[™] technology
- NVMe over Fabrics is a developing standard for low overhead replication

Synchronous Completion for QD1?

Synchronous completion also costs less OS / CPU time

- Storage Stack optimizations
- Reduced Paging Overhead
- HW RAID alternatives

Persistent Memory

Open NVM Programming Model

NVM Library: pmem.io 64-bit Linux Initially

