
<Insert Picture Here>

SNIA NVM Summit © Oracle Corporation 2013

NVM Killer Apps without the splatter

Garret Swart

2

Technology driven innovation

• DRAM compatible NVM technologies are being

developed

• Could eclipse DRAM in density, endurance, and access times

• Sooner if we can converge on a technology and concentrate

demand

• Storage APIs on NVM are great

• Existing applications can exploit it immediately

• But what about mapping NVM into application

address spaces?

• What are the killer apps? How do they benefit?

• What issues do we need to solve to make this real?

SNIA NVM Summit © Oracle Corporation 2013

3

NVM Taxonomy: Focus of talk

• Device Connectivity:

• Memory Channel, Coherency Link (e.g. QPI), PCIe, SAS

• Why? Highest off-chip bandwidth. Gives up dual-porting

• Device Form Factor:

• MCM, DIMM, PCIe card, 2.5” SFF, Blade, Rack unit

• Why? Multiple DIMMs/processor, DDR4 standard

• But: Limits device size & power, no hot swap or easy access.

• SW Abstraction

• Storage (LUN, Object Store, File System), Memory Mapped

• Why: Lowest latency access

• Device Access Logic: (Addressing, wear leveling)

• ASIC, Firmware, Processor HW, Driver SW, Application SW

• Why: Looks like DRAM  less changes to processor & SW

SNIA NVM Summit © Oracle Corporation 2013

4

Killer App 1: In Memory Databases

• Relational OLTP

• High update rate, short running queries

• Key-value Store (memcached, ZooKeeper, …)

• Mutable Map of objects

• Relational Data Warehouse

• Low update rate, Long running queries

• Incorporate new data, reorganize and compress

• Full Text Index

• Maintain a list of hits for each term

• Combine term hits to answer queries

• Partition and distribute for scale-out

• Replicate for HA and hot spot handling

SNIA NVM Summit © Oracle Corporation 2013

5 © Oracle Corporation 2013

How have we lived without NVM?

• Write ahead logging
• Append a description of the

change to the log

• Apply change to working
copy in DRAM

• Periodically checkpoint
working copy to storage

• To recover:

• Read most recent
checkpoints into DRAM

• Apply committed log
entries

• Today’s Costs
• Writing log to storage:

Increases latency on
update

• Writing checkpoints:
Interferes with forward
progress

• Recovery: Delays restart if
log is long

• NVM Promise
• Fast writes to log

• Combine the checkpoint
and working copy in NVM

• Recover only active
transactions

6 © Oracle Corporation 2013

In Memory Database

DRAM NVM

DRAM

Part 1

Part 2

Part 3

Log

Check
Points

Part 1

Part 2

Part 3

Recovery

NVM

Part 1

Part 2

Part 3

Recovery

Update Update Log
1

2

3

1

2

7

Advantages of Checkpoints

• Checkpoints can be a serialization rather than a copy

of memory

• Makes checkpoint more expensive to make but ...

• Recovery has a side effect of compacting the heap

• Mitigates entropy

• DRAM can use machine data types and pointers

• Checkpoints can use portable types and foreign keys

• Checkpoints make good backups

• DRAM corruptions can be discovered (and fixed)

during checkpointing

SNIA NVM Summit © Oracle Corporation 2013

8

Mitigating the Checkpoint advantage in

NVM segments

• Backup memory mapped files: not process or

machine images

• Only back up persistent data: Not in-flight data. Failure

should not cause a backup to record an update that has not

committed

• Periodic partition reorganization

• Create local replica of partition

• Not tied to recovery time, tied to memory entropy

• Should be much less often

• COW data structures in NVM

• Stores history in an accessible way

• Makes data corruption less likely

SNIA NVM Summit © Oracle Corporation 2013

9

Killer App 2: Data Caches

• Many datasets are too big to fit in memory

• If there is a skewed access pattern, caching can help

• Big DRAM caches are expensive to rebuild at restart

• What to cache: Distinguishing cool and cold is difficult

• Loading data: Data transfer

• OS managed NVM caches not optimal

• Move active blocks of a file to NVM

• Read/write means overhead on every access

• DRAM caching above file system hides hits from file

system and can cause hot blocks to be evicted from NVM

• mmap means VM churn as pages come in and out of NVM

• VM address space maintenance doesn’t scale

SNIA NVM Summit © Oracle Corporation 2013

10

Killer App 2: In-App Caches!

• Application Managed NVM Cache
• NVM resident memory mapped file used as cache of data

stored on file system

• LD/ST access to cached data

• Read/Write access to file system data

• Cache deserialized data structures, not bytes

• No parsing: use machine native representations

• Issues
• Sizing multiple application caches sharing same NVM

• Validating cache against base files

• Synchronizing multiple caches of same base file

• Ensuring write-back cache atomicity

• Update Data and meta-data atomically

SNIA NVM Summit © Oracle Corporation 2013

11

Managing persistent memory

• Love those Logs!

• Memory mapped NVM is best for small entries

• Library support for finding complete entries and managing log

replay

• Replication

• Physical (NVM files) vs. Logical

• Physical faster but logical adds resiliency

• HA requires replica on separate failure domain

• Failure domain is always on a different system: No such

thing as a dual ported DIMM

• RDMA to memory mapped NVM:

• Implicit or explicit msync()?

SNIA NVM Summit © Oracle Corporation 2013

12

msync() API issues

• int msync(void *addr, size_t length, int flags);

• API requires address range

• Adds overhead to track the ranges

• Maximizing flush parallelism using msync()

• Interferes with abstractions

• Requires two calls per range

• range1 = Btree_update()

• range2 = Hash_update()

• msync(range1, MS_ASYNC)

• msync(range2, MS_ASYNC)

• msync(range1, MS_SYNC)

• msync(range2, MS_SYNC)

• Fix: Thread based? Flush on Failure?

SNIA NVM Summit © Oracle Corporation 2013

