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Open, read, write, rewind, close. 
 

Open, read, write, seek, close. 
 
Open, read, write, seek, close. 
 
Open, read, write, seek, close. 
Plus, new primitives to exploit characteristics of non-volatile memory 

Basic write + atomic write, conditional write. 
Basic write + TTL expiry for auto-deletion. 
Basic mmap + crash-safety, versioning. 
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Databases 
Transactional Atomicity: 
Replace various workarounds 
implemented in database code to 
provide write atomicity (double-
buffered writes, etc.)  
 
Filesystems 
File Update Atomicity: 
Replace various workarounds 
implemented in filesystem code to 
provide file/directory update atomicity 
(journaling, etc.) 
 

▸ 99% performance of raw writes 
Smarter media now natively 
understands atomic updates, with 
no additional metadata overhead. 
 

▸ 2x longer flash media life Atomic 
Writes increase the life of flash 
media up to 2x due to reduction in 
write-ahead-logging and double-
write buffering. 
 

▸ 50% less code in key modules 
Atomic operations dramatically 
reduce application logic, such as 
journaling, built as work-arounds. 

 



MySQL with Atomic Writes 

Double-write disabled – Non-ACID  

Double-write – ACID 

XFS directFS with Atomic I/O 

Twice the performance of 
ACID transactions 

Atomic writes – ACID 
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▸ Leverages native flash 
capabilities for file system 
acceleration 

▸ File services layer  
▸ Consumes and uses native 

primitives 
▸ Exports primitives for use by 
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▸ Appears as any other file system in Linux  
▸ Applications can use directFS file system unmodified  

with performance benefits 
▸ Focuses only on file namespace 
▸ Employs virtualized flash storage layer’s logic for: 

• Large virtualized addressed space 
• Direct flash access 
• Crash recovery mechanisms 

▸ Exports Primitives through file namespace 
▸ Applications can use primitives through directFS or directly to 

device 

 



directFS: Native File Name Space for NVM 
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MySQL on  
directFS with Atomic Writes 

Double-write disabled – Non-ACID  

Double-write – ACID 

XFS directFS with Atomic I/O 

Twice the performance of 
ACID transactions 

Atomic writes – ACID 
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Key-value store API Library:  
Sample Uses and Benefits 
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NoSQL Applications 
Reduce overprovisioning due to lack 
of coordination between two-layers of 
garbage collection (application-layer 
and flash-layer).  Some top NoSQL 
applications recommend over-
provisioning by 3x due to this. 
 
Reduce application I/Os through 
batched put and get operations. 
 
Increase performance by eliminating 
packing and unpacking blocks, 
defragmentation, and duplicate 
metadata at app layer. 
  
 
 

▸ 95% performance of raw device 
Smarter media now natively understands 
a key-value I/O interface with lock-free 
updates, crash recovery, and no 
additional metadata overhead. 

 
▸ Up to 3x capacity increase 

Dramatically reduces over-provisioning 
with coordinated garbage collection and 
automated key expiry. 
 

▸ 3x throughput on same SSD 
Early benchmarks comparing against 
memcached with BerkeleyDB 
persistence show up to 3x improvement. 

 



Key-Value Store API library 
Benchmarks 
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Extended 
Memory Volatile 

Transparently extends DRAM 
onto flash, extending 
application virtual memory 

Checkpointed 
Memory 

Volatile with non-volatile 
checkpoints 

Region of application 
virtual memory with ability to 
preserve snapshots to flash 
namespace 

Auto-Commit 
Memory™ Non-volatile 

Region of application memory 
automatically persisted to non-
volatile memory and 
recoverable post-system failure 



OS Swap vs. Extended Memory 
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Originally designed as a last resort to prevent OOM (out-of-memory) failures 
Never tuned for high-performance demand-paging 
Never tuned for multi-threaded apps 
Poor performance, ex. < 30 MB/sec throughput 
 
 
 
 
No application code changes required 
Designed to migrate hot pages to DRAM and cold pages to ioMemory 
Tuned to run natively on flash (leverages native characteristics) 
Tuned for multi-threaded apps 
10-15x throughput improvement over standard OS Swap 
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Comparing I/O and Memory Access 
Semantics 
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I/O 
I/O semantics examples: 

• Open file descriptor – open(), read(), write(), seek(), close() 
• (New) Write multiple data blocks atomically, nvm_vectored_write()  
• (New) Open key-value store – nvm_kv_open(), kv_put(), kv_get(), kv_batch_*() 

Memory 
Access 

 
(Volatile) 

Volatile memory semantics example: 
• Allocate virtual memory, e.g. malloc() 
• memcpy/pointer dereference writes (or reads) to memory address 
• (Improved) Page-faulting transparently loads data from NVM into memory 

Memory 
Access 

 
(Non-

Volatile) 

Non-volatile memory semantics example: 
• (New) Allocate and map Auto-Commit Memory™ (ACM) virtual memory pages 
• memcpy/pointer dereference writes (or reads) to memory address 
• (New) Call checkpoint() to create application-consistent ACM page snapshots 
• (New) After system failure, remap ACM snapshot pages to recover memory state 
• (New) De-stage completed ACM pages to NVM namespace 
• (New) Remap and access ACM pages from NVM namespace at any time 



Application Use of Memory-Access 
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1. Application source uses memory programming 
semantics, such as malloc(), free(), pointer ops, 
etc. 
 

2. Stack can exhibit different properties ranging 
from purely volatile (DRAM extension), to 
intermediate points of persistence (checkpoints), 
to fine grained persistence (ACM) 
 

3. Underlying technology can be block oriented or 
support direct CPU load/store operations 
 

4. Integrates with existing storage namespaces 



Open Interfaces and Open Source 
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• Primitives: Open Interface 

• directFS: Open Source 

• API Libraries: Open Source, Open Interface 

• Application modifications: Open Source 

• INCITS SCSI (T10) active standards proposals: 
▸ SBC-4 SPC-5 Atomic-Write 

http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf 

▸ SBC-4 SPC-5 Scattered writes, optionally atomic 
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf 

▸ SBC-4 SPC-5 Gathered reads, optionally atomic 
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf  

• SNIA NVM-Programming TWG active member 
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