NVM Software Interfaces
New Directions

Nisha Talagala

Copyright © 2013 Fusion-io, Inc. All rights reserved.

%

Evolution of Flash Adoption FusioN-io

FLASH + DISK

February 4, 2013 SNIA NVM Summit 2

%

Evolution of Flash Adoption

FLASH + DISK FLASH AS DISK
. -,
P

D,

FUSION-IO

%

Evolution of Flash Adoption

FUSION-IO

FLASH AS
FLASH + DISK FLASH AS DISK MEMORY

SSD.

SSD

February 4, 2013

SNIA NVM Summit

%

Evolution of Flash Adoption FusioN-io

FLASH + DISK FLASH AS DISK FLASH AS MEMORY NATIVE APIs
SSD SSD H
: N .ln ..I. “ O
.

N\ w s FH

February 4, 2013 SNIA NVM Summit 5

%

Conventional I/O Access

APPLICATION

Application source code

o———— Conventional I/O access ———o

Simple Network
Block File

FUSION-IiO

Proprietary Storage OS

Native Flash Translation Layer

Storage Media

Storage Media

Traditional Storage

Software Defined Storage

February 4, 2013 SNIA NVM Summit

%

Direct-Access I/O through Native FUSION-IO
Interfaces

APPLICATION

Application source code
e———— Direct access /O —

o———— Conventional I/O access ———o

Simple Network Simple
Block File Block

Transactional |Native| Key-Value

Proprietary Storage OS Native Flash Translation Layer
Storage Media Storage Media
() k
— . N
N, '
Traditional Storage Software Defined Storage

February 4, 2013 SNIA NVM Summit 7

Memory-access through Native
Interfaces

APPLICATION

Application source code ‘ Memory access ———————————=

o———— Direct access /O —o

o——— Conventional I/O access ———
Auto-
Commit
Memory™

High-speed | Checkpointed

Transactional |Native| Key-Value Ulsimory

Block
Simple Network Simple
Block File Block
Proprietary Storage OS Native Flash Translation Layer
Storage Media Storage Media
.' “p

Traditional Storage Software Defined Storage

FUSION-IiO’

February 4, 2013 SNIA NVM Summit

%

New Primitives for a New Type of Media FUSiON-iO

Tape

Open, read, write, rewind, close.

Disk

Open, read, write, seek, close.

SSD

Open, read, write, seek, close.

ioMemory
NAVAY

Open, read, write, seek, close.

Plus, new primitives to exploit characteristics of non-volatile memory

Basic write + atomic write, conditional write.
Basic write + TTL expiry for auto-deletion.
Basic mmap + crash-safety, versioning.

February 4, 2013 SNIA NVM Summit 9

%

ATOMIC I/O Primitives:
Sample Uses and Benefits

Databases

Transactional Atomicity:

Replace various workarounds
implemented in database code to
provide write atomicity (double-
buffered writes, etc.)

Filesystems

File Update Atomicity:

Replace various workarounds
implemented in filesystem code to
provide file/directory update atomicity
(journaling, etc.)

FUSION-IO

99% performance of raw writes
Smarter media now natively
understands atomic updates, with
no additional metadata overhead.

2x longer flash media life Atomic
Writes increase the life of flash
media up to 2x due to reduction in
write-ahead-logging and double-
write buffering.

50% less code in key modules
Atomic operations dramatically
reduce application logic, such as
journaling, built as work-arounds.

MySQL with Atomic Writes TR

\Double-write disabled — Non-ACID Atomic writes — ACID
[\ A »

.° A A L - r A

- " » -« '\ Fawy N\ .._.-' ’_._.-.._ o« \\' Py .

'l ."-. Vi L} A B N S A W e v L v -
- \/ ¥ \ A ¥ v ¥ L 4

Twice the performance of
Double-write — ACID ACID transactions

directFS with Atomic I/O

%

v

v

v

v

v

Native File System Access

Leverages native flash
capabilities for file system
acceleration

File services layer
Consumes and uses native
primitives

Exports primitives for use by
applications

Applications can run on either
devices or filesystems

FUSION-iO' Native Access

ioMemory™ with ioMemory™ with
direct access I/0 memory semantics

Application

User-defined Memory
API Libraries

Application

User-defined I/O
API Libraries

Direct-access I/O
API Libraries

directFS —
NVM filesystem

Memory Semantics
API Libraries

directFS —
NVM filesystem

Memory Primitives

1/0 Primitives

VSL™ vVSL™
Read/Write Read/Write CPU Load/Store

FUSION-IO

February 4, 2013 SNIA NVM Summit

12

N
44" d | reCt FS FUSION-iO

Appears as any other file system in Linux

Applications can use directFS file system unmodified
with performance benefits

Focuses only on file namespace

Employs virtualized flash storage layer’s logic for:
Large virtualized addressed space
Direct flash access
Crash recovery mechanisms

Exports Primitives through file namespace

Applications can use primitives through directFS or directly to
device

%

directFS: Native File Name Space for NVM Fusion-io

Application
user-space

kernel-space

VFES (virtual file system) abstraction layer

ext3 I btrfs I xf directFS

Kernel block layer

ioMemory VSL— Dynamic provisioning,

February 4, 2013 SNIA NVM Summit 14

directFS — Eliminating duplicate logic FUSiON-iO

Application
user-space

kernel-space VFS (virtual file system) abstraction layer

FS
file metadata mgmt,
block allocation, mapping, recycling,
ACID updates, logging/journaling, crash-recovery, ACID Block

Kernel block layer

directFS
file metadata mgmt

Block

atomic write() exists() PTRIM()

ioMemory VSL
block allocation, mapping, recycling

February 4, 2013 SNIA NVM Summit

Updates: Availability: ~ Grooming:

15

Bandwidth (MiB/s)

300

Performance PARITY BETWEEN BLOCK

AND DIRECTFS: micro-benchmarks

2 Thread

512B 4k 8k

I/O Size

February 4,
2013

Ji

FUSION-IO

Seq Read, Block

Seq Read, directFS

Rand Read, Block

Rand Read, directFS

Seq Write, Block

Seq Write, directFS

Rand Write, Block

Rand Write, directFS

16

% Performance PARITY BETWEEN BLOCK
AND DIRECTFS: atomic writes

1 Thread 8 Threads
1400 1400

FUSION-IO

21 . 1111
i — [. | C mii LR
.ul |

4 8k 16k 3% 64k 128k 256k Ak 8k 16k 32k 64k 128k 256k
/10 Size I/0 Size

[] Block [directFs

Bandwidth (MiB/s)
Bandwidth (MiB/s)

February 4,

2013 1

MySQL on

. . . . FUSION-IiO
directFS with Atomic Writes
II,-'"'-.__.DoubIe—write disabled — Non-ACID Atomic writes — ACID 1
. .h.“..‘ ../.'\¥ 0‘ ”-.._.."..'"'-__..__._4-.‘\.._.._.._. . ‘_..t.“ ’.\.“.-I.,.-.-\'_.A, 'v""&‘.' .-"".’*_._.'"-._.l._a,.-"!.\‘. p, ...

Twice the performance of
Double-write — ACID ACID transactions

directFS with Atomic I/O

% Key-value store API Library:
Sample Uses and Benefits

FUSION-IO

NoSQL Applications 95% performance of raw device
Reduce overprovisioning due to lack Smarter media now natively understands
of coordination between two-layers of a key-value 1/O interface with lock-free

updates, crash recovery, and no

garbage collection (application-layer additional metadata overhead.

and flash-layer). Some top NoSQL
applications recommend over-

provisioning by 3x due to this. Up to 3x capacity increase

o Dramatically reduces over-provisioning
Reduce application 1/Os through with coordinated garbage collection and
batched put and get operations. automated key expiry.
Increase performance by eliminating 3x throughput on same SSD
packing and gnpacklng blqcks, Early benchmarks comparing against
defragmentation, and duplicate memcached with BerkeleyDB

metadata at app layer. persistence show up to 3x improvement.

%

Key-Value Store API library
Benchmarks

lterate (A)

IOPS K

[] | | |

1 2 4 8B 16
Threads

IOPS K

100
90
80
70

60 |
20

40
30
20

19_43’/3 -

D*ﬁl | |

Gets (B)

1 2 4 8 16
Threads

IOPS K

100
a0
80
70
60
20

40

30

20

Puts (C)

-/
| i/g,_;;
10 == .

DFEI | |

i
i

[

3

12 4 8 16

Threads

IOPS K

FUSION-IO

Figure 5: Performance comparison of basic operations between DirectKV and Memcachedb.
DEV: DrrectKV, MDB-A: Memcachedb Asyne, MDB-5: Memeachedb Syne

February 4, 2013

Deletes (D)
EE" I 1 I |
a5 [i
'4[] B l,l'I n
35 L /-
30 F S
b N
P
15 —// i
[
0 £ 01
1 2 4 8 16
Threads
DY ——
MDB-A ---x
MDB-5 ---%

SNIA NVM Summit

20

%

Range of memory-Access Semantics FUSiON-io

Transparently extends DRAM
Volatile onto flash, extending
application virtual memory

Extended

Memory

Region of application

Checkpointed Volatile with non-volatile virtual memory with ability to
Memory checkpoints preserve snapshots to flash
namespace

Region of application memory

Auto-Commit : automatically persisted to non-
Non-volatile

Memory™ volatile memory and
recoverable post-system failure

February 4, 2013 SNIA NVM Summit

21

%

OS Swap vs. Extended Memory Fusion-io
ﬁfcr?gmﬁ] Non-Volatile Storage

(Disks, SSDs, etc.)

Originally designed as a last resort to prevent OOM (out-of-memory) failures
Never tuned for high-performance demand-paging

Never tuned for multi-threaded apps

Poor performance, ex. < 30 MB/sec throughput

Extended Memory

System Memory Mechanism loMemory
el
No application code changes required
Designed to migrate hot pages to DRAM and cold pages to ioMemory
Tuned to run natively on flash (leverages native characteristics)
Tuned for multi-threaded apps
10-15x throughput improvement over standard OS Swap

February 4, 2013 SNIA NVM Summit 22

Comparing I/O and Memory Access
Semantics

I/O semantics examples:
» Open file descriptor — open(), read(), write(), seek(), close()
* (New) Write multiple data blocks atomically, nvm_vectored_write()
* (New) Open key-value store — nvm_kv_open(), kv_put(), kv_get(), kv_batch_*()

Memory Volatile memory semantics example:
Access Allocate virtual memory, e.g. malloc()

* memcpy/pointer dereference writes (or reads) to memory address
(Volatile) * (Improved) Page-faulting transparently loads data from NVM into memory

Non-volatile memory semantics example:

* (New) Allocate and map Auto-Commit Memory virtual memory pages
Memor (New) All d Auto-C it M ™ (ACM) virtual
Access * memcpy/pointer dereference writes (or reads) to memory address
* (New) Call checkpoint() to create application-consistent ACM page snapshots
(Non- * (New) After system failure, remap ACM snapshot pages to recover memory state
Volatile) * (New) De-stage completed ACM pages to NVM namespace

* (New) Remap and access ACM pages from NVM namespace at any time

February 4, 2013 SNIA NVM Summit

FUSION-IO

23

%

Application Use of Memory-Access
Semantics

. Application source uses memory programming

semantics, such as malloc(), free(), pointer ops,
etc.

. Stack can exhibit different properties ranging

from purely volatile (DRAM extension), to
intermediate points of persistence (checkpoints),
to fine grained persistence (ACM)

. Underlying technology can be block oriented or

support direct CPU load/store operations

. Integrates with existing storage namespaces

FUSION-IO

ioMemory with
memory semantics

Application

Open Source
Extensions

Extended
Memory
Auto-Commit
Memory

_VSL .

Read/Write Load/Store

February 4, 2013

SNIA NVM Summit 24

‘
N
K Open Interfaces and Open Source FUSION-io
Primitives: Open Interface
directFS: Open Source
API Libraries: Open Source, Open Interface

Application modifications: Open Source

INCITS SCSI (T10) active standards proposals:

SBC-4 SPC-5 Atomic-Write
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf

SBC-4 SPC-5 Scattered writes, optionally atomic
http://www.t10.0rg/cgi-bin/ac.pl?t=d&f=12-086r3.pdf

SBC-4 SPC-5 Gathered reads, optionally atomic
http://www.t10.0rg/cgi-bin/ac.pl?t=d&f=12-087r3.pdf

SNIA NVM-Programming TWG active member

http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf

fusionio.com

o SNNEEENE o ey TSR] SyTIor T NS

QUESTIONS?

I

REDEFINE WHAT'S POSSIBLE

fusionio.com

o SNNEEENE o ey TSR] SyTIor T NS

THANK YOU

I

REDEFINE WHAT'S POSSIBLE

	NVM Software Interfaces�New Directions
	Evolution of Flash Adoption
	Evolution of Flash Adoption
	Evolution of Flash Adoption
	Evolution of Flash Adoption
	Conventional I/O Access
	Direct-Access I/O through Native Interfaces
	Memory-access through Native Interfaces
	New Primitives for a New Type of Media
	ATOMIC I/O Primitives:�Sample Uses and Benefits
	MySQL with Atomic Writes
	Native File System Access
	directFS
	directFS: Native File Name Space for NVM
	directFS – Eliminating duplicate logic
	Performance PARITY BETWEEN BLOCK AND DIRECTFS: micro-benchmarks
	Performance PARITY BETWEEN BLOCK AND DIRECTFS: atomic writes
	MySQL on �directFS with Atomic Writes
	Key-value store API Library: �Sample Uses and Benefits
	Key-Value Store API library Benchmarks
	Range of memory-Access Semantics
	OS Swap vs. Extended Memory
	Comparing I/O and Memory Access Semantics
	Application Use of Memory-Access Semantics
	Open Interfaces and Open Source
	Slide Number 26
	Slide Number 27

