
Fusion-io Confidential—Copyright © 2013 Fusion-io, Inc. All rights reserved. Copyright © 2013 Fusion-io, Inc. All rights reserved.

NVM Software Interfaces
New Directions

Nisha Talagala

Evolution of Flash Adoption

February 4, 2013 SNIA NVM Summit 2

F L A S H + D I S K

Evolution of Flash Adoption

February 4, 2013 SNIA NVM Summit 3

F L A S H + D I S K

F L A S H A S D I S K

Evolution of Flash Adoption

February 4, 2013 SNIA NVM Summit 4

F L A S H A S
M E M O R Y

F L A S H + D I S K

F L A S H A S D I S K

Evolution of Flash Adoption

February 4, 2013 SNIA NVM Summit 5

Conventional I/O Access

February 4, 2013 SNIA NVM Summit 6

APPLICATION

Application source code

Simple
Block

Network
File

Simple
Block

Traditional Storage

Proprietary Storage OS

Storage Media

Native Flash Translation Layer

Storage Media

Software Defined Storage

Conventional I/O access

Direct-Access I/O through Native
Interfaces

February 4, 2013 SNIA NVM Summit 7

APPLICATION

Application source code

Transactional
Block

Native
File

Key-Value
Object

Simple
Block

Network
File

Simple
Block

Traditional Storage

Proprietary Storage OS

Storage Media

Native Flash Translation Layer

Storage Media

Software Defined Storage

Conventional I/O access

Direct access I/O

Memory-access through Native
Interfaces

February 4, 2013 SNIA NVM Summit 8

APPLICATION

Application source code

High-speed
Log

Checkpointed
Memory

Auto-
Commit

Memory™ Transactional
Block

Native
File

Key-Value
Object

Simple
Block

Network
File

Simple
Block

Traditional Storage

Proprietary Storage OS

Storage Media

Native Flash Translation Layer

Storage Media

Software Defined Storage

Conventional I/O access

Memory access

Direct access I/O

New Primitives for a New Type of Media

February 4, 2013 SNIA NVM Summit 9

Open, read, write, rewind, close.

Open, read, write, seek, close.

Open, read, write, seek, close.

Open, read, write, seek, close.
Plus, new primitives to exploit characteristics of non-volatile memory

Basic write + atomic write, conditional write.
Basic write + TTL expiry for auto-deletion.
Basic mmap + crash-safety, versioning.

Tape

Disk

ioMemory
NVM

SSD

ATOMIC I/O Primitives:
Sample Uses and Benefits

February 4, 2013 SNIA NVM Summit 10

Databases
Transactional Atomicity:
Replace various workarounds
implemented in database code to
provide write atomicity (double-
buffered writes, etc.)

Filesystems
File Update Atomicity:
Replace various workarounds
implemented in filesystem code to
provide file/directory update atomicity
(journaling, etc.)

▸ 99% performance of raw writes
Smarter media now natively
understands atomic updates, with
no additional metadata overhead.

▸ 2x longer flash media life Atomic
Writes increase the life of flash
media up to 2x due to reduction in
write-ahead-logging and double-
write buffering.

▸ 50% less code in key modules
Atomic operations dramatically
reduce application logic, such as
journaling, built as work-arounds.

MySQL with Atomic Writes

Double-write disabled – Non-ACID

Double-write – ACID

XFS directFS with Atomic I/O

Twice the performance of
ACID transactions

Atomic writes – ACID

Fusion-io Confidential 11

Native File System Access

February 4, 2013 SNIA NVM Summit 12

▸ Leverages native flash
capabilities for file system
acceleration

▸ File services layer
▸ Consumes and uses native

primitives
▸ Exports primitives for use by

applications
▸ Applications can run on either

devices or filesystems

ioMemory™ with
direct access I/O

ioMemory™ with
memory semantics

Application Application

User-defined I/O
API Libraries

User-defined Memory
API Libraries

Direct-access I/O
API Libraries

Memory Semantics
API Libraries

directFS –
NVM filesystem

directFS –
NVM filesystem

I/O Primitives Memory Primitives

VSL™ VSL™

Read/Write Read/Write CPU Load/Store

Native Access

directFS

February 4, 2013 SNIA NVM Summit 13

▸ Appears as any other file system in Linux
▸ Applications can use directFS file system unmodified

with performance benefits
▸ Focuses only on file namespace
▸ Employs virtualized flash storage layer’s logic for:

• Large virtualized addressed space
• Direct flash access
• Crash recovery mechanisms

▸ Exports Primitives through file namespace
▸ Applications can use primitives through directFS or directly to

device

directFS: Native File Name Space for NVM

February 4, 2013 SNIA NVM Summit 14

Application

VFS (virtual file system) abstraction layer

ioMemory VSL– Dynamic provisioning,
Block allocation, logging etc.

ext3 btrfs xfs directFS

Kernel block layer

kernel-space

user-space

directFS – Eliminating duplicate logic

February 4, 2013 SNIA NVM Summit 15

Application

VFS (virtual file system) abstraction layer

ioMemory VSL
block allocation, mapping, recycling

ACID updates, logging/journaling, crash-recovery,

directFS
file metadata mgmt

Kernel block layer

Block
Availability:

exists()

ACID
Updates:

atomic write()

Block
Grooming:
PTRIM()

kernel-space

user-space

FS
file metadata mgmt,

block allocation, mapping, recycling,
ACID updates, logging/journaling, crash-recovery,

Performance PARITY BETWEEN BLOCK
AND DIRECTFS: micro-benchmarks

February 4,
2013 16

2 Thread

I/O Size

Seq Read, Block

Seq Read, directFS

Rand Read, Block

Rand Read, directFS

Seq Write, Block

Seq Write, directFS

Rand Write, Block

Rand Write, directFS

B
an

dw
id

th
 (M

iB
/s

)

Performance PARITY BETWEEN BLOCK
AND DIRECTFS: atomic writes

February 4,
2013 17

B
an

dw
id

th
 (M

iB
/s

)

I/O Size
B

an
dw

id
th

 (M
iB

/s
)

I/O Size
Block directFS

1 Thread 8 Threads

MySQL on
directFS with Atomic Writes

Double-write disabled – Non-ACID

Double-write – ACID

XFS directFS with Atomic I/O

Twice the performance of
ACID transactions

Atomic writes – ACID

Fusion-io Confidential 18

Key-value store API Library:
Sample Uses and Benefits

February 4, 2013 SNIA NVM Summit 19

NoSQL Applications
Reduce overprovisioning due to lack
of coordination between two-layers of
garbage collection (application-layer
and flash-layer). Some top NoSQL
applications recommend over-
provisioning by 3x due to this.

Reduce application I/Os through
batched put and get operations.

Increase performance by eliminating
packing and unpacking blocks,
defragmentation, and duplicate
metadata at app layer.

▸ 95% performance of raw device
Smarter media now natively understands
a key-value I/O interface with lock-free
updates, crash recovery, and no
additional metadata overhead.

▸ Up to 3x capacity increase

Dramatically reduces over-provisioning
with coordinated garbage collection and
automated key expiry.

▸ 3x throughput on same SSD
Early benchmarks comparing against
memcached with BerkeleyDB
persistence show up to 3x improvement.

Key-Value Store API library
Benchmarks

February 4, 2013 SNIA NVM Summit 20

Range of memory-Access Semantics

February 4, 2013 SNIA NVM Summit 21

Extended
Memory Volatile

Transparently extends DRAM
onto flash, extending
application virtual memory

Checkpointed
Memory

Volatile with non-volatile
checkpoints

Region of application
virtual memory with ability to
preserve snapshots to flash
namespace

Auto-Commit
Memory™ Non-volatile

Region of application memory
automatically persisted to non-
volatile memory and
recoverable post-system failure

OS Swap vs. Extended Memory

February 4, 2013 SNIA NVM Summit 22

Originally designed as a last resort to prevent OOM (out-of-memory) failures
Never tuned for high-performance demand-paging
Never tuned for multi-threaded apps
Poor performance, ex. < 30 MB/sec throughput

No application code changes required
Designed to migrate hot pages to DRAM and cold pages to ioMemory
Tuned to run natively on flash (leverages native characteristics)
Tuned for multi-threaded apps
10-15x throughput improvement over standard OS Swap

Non-Volatile Storage
(Disks, SSDs, etc.)

System Memory

OS SWAP
Mechanism

ioMemory

System Memory

Extended Memory
Mechanism

Comparing I/O and Memory Access
Semantics

February 4, 2013 SNIA NVM Summit 23

I/O
I/O semantics examples:

• Open file descriptor – open(), read(), write(), seek(), close()
• (New) Write multiple data blocks atomically, nvm_vectored_write()
• (New) Open key-value store – nvm_kv_open(), kv_put(), kv_get(), kv_batch_*()

Memory
Access

(Volatile)

Volatile memory semantics example:
• Allocate virtual memory, e.g. malloc()
• memcpy/pointer dereference writes (or reads) to memory address
• (Improved) Page-faulting transparently loads data from NVM into memory

Memory
Access

(Non-

Volatile)

Non-volatile memory semantics example:
• (New) Allocate and map Auto-Commit Memory™ (ACM) virtual memory pages
• memcpy/pointer dereference writes (or reads) to memory address
• (New) Call checkpoint() to create application-consistent ACM page snapshots
• (New) After system failure, remap ACM snapshot pages to recover memory state
• (New) De-stage completed ACM pages to NVM namespace
• (New) Remap and access ACM pages from NVM namespace at any time

Application Use of Memory-Access
Semantics

February 4, 2013 SNIA NVM Summit 24

Legacy SSDs ioMemory as
ioDrive

ioMemory as
Transparent Cache

ioMemory with
direct access I/O

ioMemory with
memory semantics

Ap
pl

ic
at

io
n

Application

Ap
pl

ic
at

io
n

Application Application Application Application

Open Source
Extensions

Open Source
Extensions

OS Block I/O OS Block I/O OS Block I/O

di
re

ct
 I

/O

Pr
im

iti
ve

s

di
re

ct

Ke
y-

Va
lu

e
St

or
e

 A
PI

di
re

ct
 C

ac
he

AP

I

Ex
te

nd
ed

M

em
or

y

Ch
ec

k-
po

in
te

d
M

em
or

y

Au
to

-C
om

m
it

M
em

or
y

Ho
st

Ho
st

File System File System File System
directFS –
native file

system service

 directFS

VSL

 Block Layer
Block Layer Block Layer

SAS/SATA

Network VSL
Virtual Storage

Layer

directCache
VSL VSL

Re
m

ot
e RAID Controller

VSL Flash Layer
Read/Write Read/Write Read/Write Read/Write Read/Write Load/Store

1. Application source uses memory programming
semantics, such as malloc(), free(), pointer ops,
etc.

2. Stack can exhibit different properties ranging
from purely volatile (DRAM extension), to
intermediate points of persistence (checkpoints),
to fine grained persistence (ACM)

3. Underlying technology can be block oriented or
support direct CPU load/store operations

4. Integrates with existing storage namespaces

Open Interfaces and Open Source

February 4, 2013 SNIA NVM Summit 25

• Primitives: Open Interface

• directFS: Open Source

• API Libraries: Open Source, Open Interface

• Application modifications: Open Source

• INCITS SCSI (T10) active standards proposals:
▸ SBC-4 SPC-5 Atomic-Write

http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf

▸ SBC-4 SPC-5 Scattered writes, optionally atomic
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf

▸ SBC-4 SPC-5 Gathered reads, optionally atomic
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf

• SNIA NVM-Programming TWG active member

http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf

f u s i o n i o . c o m | R E D E F I N E W H A T ’ S P O S S I B L E

Q U E S T I O N S ?

f u s i o n i o . c o m | R E D E F I N E W H A T ’ S P O S S I B L E

T H A N K Y O U

	NVM Software Interfaces�New Directions
	Evolution of Flash Adoption
	Evolution of Flash Adoption
	Evolution of Flash Adoption
	Evolution of Flash Adoption
	Conventional I/O Access
	Direct-Access I/O through Native Interfaces
	Memory-access through Native Interfaces
	New Primitives for a New Type of Media
	ATOMIC I/O Primitives:�Sample Uses and Benefits
	MySQL with Atomic Writes
	Native File System Access
	directFS
	directFS: Native File Name Space for NVM
	directFS – Eliminating duplicate logic
	Performance PARITY BETWEEN BLOCK AND DIRECTFS: micro-benchmarks
	Performance PARITY BETWEEN BLOCK AND DIRECTFS: atomic writes
	MySQL on �directFS with Atomic Writes
	Key-value store API Library: �Sample Uses and Benefits
	Key-Value Store API library Benchmarks
	Range of memory-Access Semantics
	OS Swap vs. Extended Memory
	Comparing I/O and Memory Access Semantics
	Application Use of Memory-Access Semantics
	Open Interfaces and Open Source
	Slide Number 26
	Slide Number 27

