

Go further, faster®

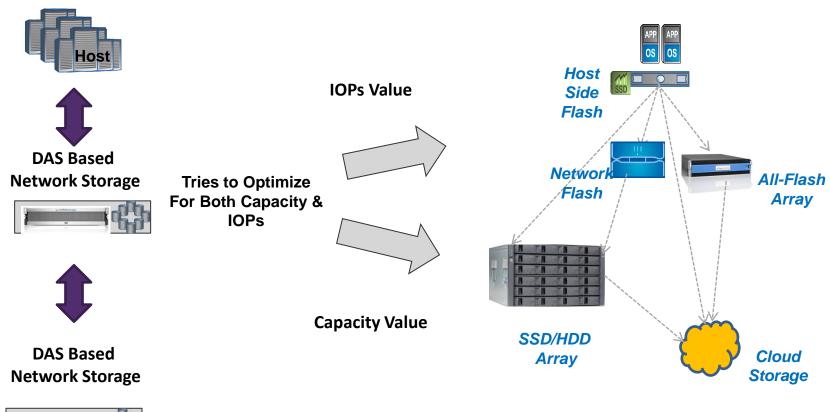
Multi-Tier Subsystem Management Using SLOs

Kaladhar Voruganti Technical Director, CTO Office NetApp, Sunnyvale January 29th, 2013

Part 1: Discuss Storage Architecture Trends due to NVM

 Part 2: Impact of the above trends on Storage Management Paradigm (Need for management by SLOs)

Part 1: Discuss Storage Architecture Trends due to NVM


 Part 2: Impact of the above trends on Storage Management Paradigm (Need for management by SLOs)

Trend 1: NVM Accelerating Multi-Layered Storage Architectures

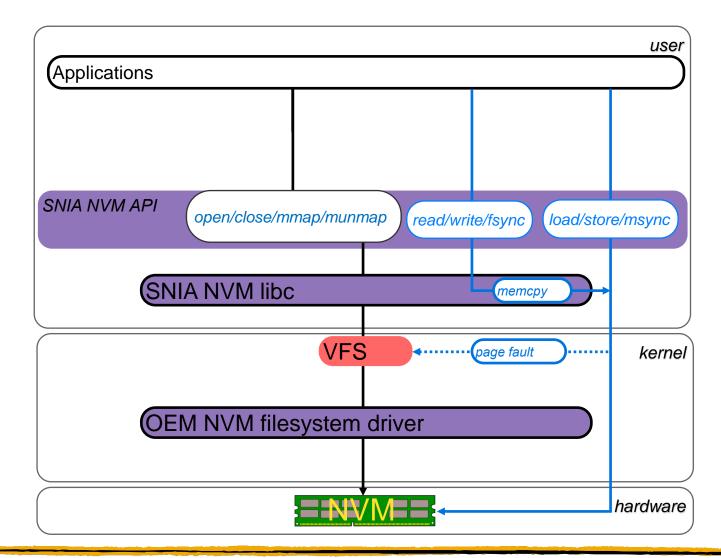
Traditional Network Storage

Emerging World

5

NetApp	NetApp							
	Category	Solutions						
	Server Flash Cache (Dedicated/Clustered)	NetApp Flash Accel , Fusion-IO/IO-Turbine, LSI, VFCache, Flashsoft,EMC Lightning						
	Network Flash Cache (Near-server / in-network)	NetApp CachelQ EMC Thunder,ION, Avere, GridIron						
	All-Flash Array	Violin WhipTail XtremIO (EMC)						
	Storage Flash Cache/Tier	NetApp Flash Cache NetApp Flash Pools, EMC FAST, HDS						

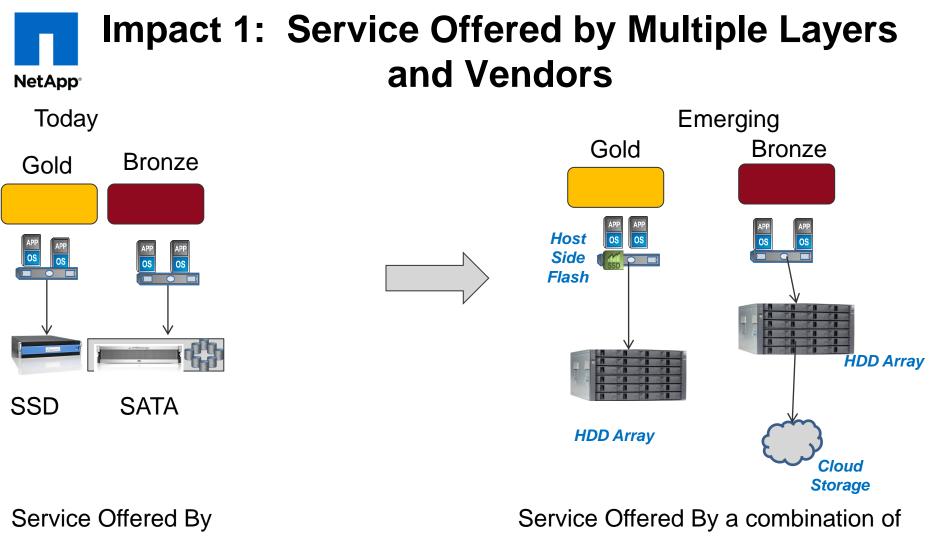
© 2012 NetApp, Inc. All rights reserved.


Sharing/Data Management

Capacity

Performance

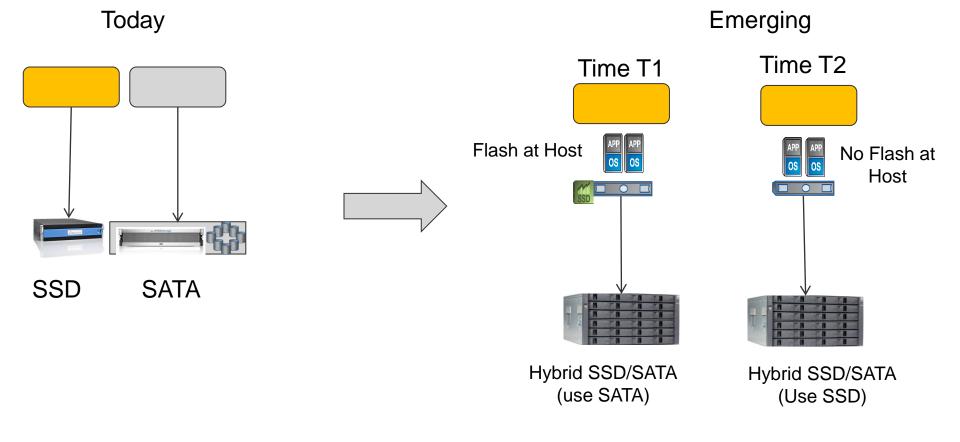
Trend 2: NVM Enabling Load/Store Persistence Programming Model



© 2013 NetApp, Inc. All rights reserved.

 Part 1: Discuss Storage Architecture Trends due to NVM

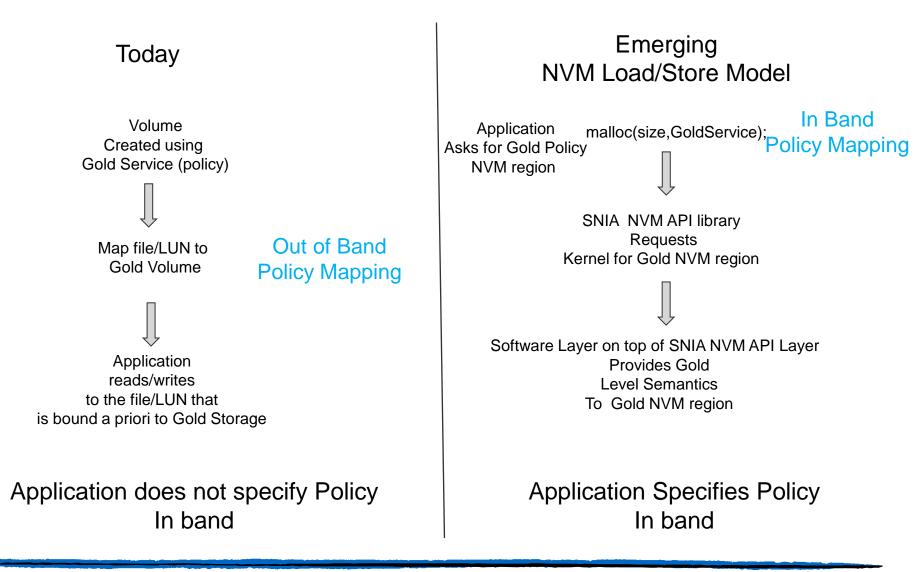
 Part 2: Impact of the above trends on Storage Management Paradigm (Need for management by SLOs)



- Single Layer
- Single Vendor

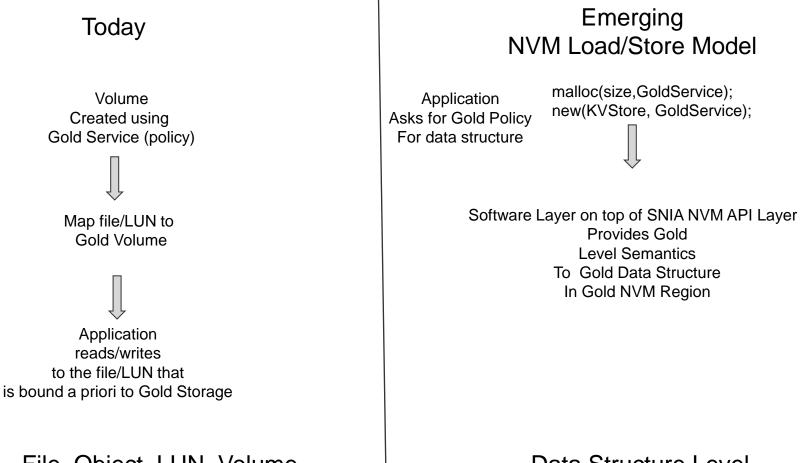
- Multiple Layers
- Multiple Vendors

Impact 2: Service Level To Configuration Binding is Not Fixed



Fixed Binding between
Configuration and Service Level

Dynamic Binding between
Configuration and Service Level for
Better resource utilization



Impact 3: In band Policy Binding

Impact 4: Data Structure Level Policies

File, Object, LUN, Volume Level Policy Management Data Structure Level Policy Management

 Part 1: Discuss Storage Architecture Trends due to NVM

 Part 2: Impact of the above trends on Storage Management Paradigm (Need for management by SLOs)

Following Standards Efforts are Required

- Service Definition using SLOs needs to be standardized
 - For coordination between different layers
 - For policy specification in Load/Store access model

Inter-Layer Control Protocol needs to be standardized

Inter-Layer I/O Protocol needs to be standardized

SLO Standards for Service Definition

NetApp[®]

SLO Dimension	Old way of describing Service Attributes using Vendor technology attributes	SLO Way of describing Service Attributes	
Performance	SATA, SSD etc	Latency Ceiling Latency Floor IOPs or Bandwidth Ceiling IOPs or Bandwidth Floor	
Operational Recovery	SnapVault, SnapMirror,NDMP	RPO Retention Time Backup Mode	
Disaster Recovery	SnapMirror Async, MetroCluster	RPO Distance Replication Mode	
Protection (Availability)	RAID-DP, HA	Media Failure Protection Shelf Failure Protection Head Failure Protection	
Space Guarantee	Dedup, Compression, Fractional Reserve etc	Thin Provisioning Thick Provisioning	

- Services Described using Quantitative, Vendor Technology Independent SLO Attributes
- •
- Service Definition can encapsulate multiple layers managed by different Vendors
- We need to standardize both SLO dimensions and SLO attributes for Services

Control Protocol Standards Needed

Coordinate Control Actions Between Layers

APP on	Migration	Workload Throttling	Caching	Encryption
Hypervisor Orchestrator	Which Layer Should Migrate data During SLO violation	Which layer should throttle Workload during SLO violation	Coordinate Cache Sizing across layers	Which layer should encrypt data

- Control Protocol works either directly between different vendor layers or between an Orchestrator and the different vendor layers
- Is SMI-S the right place to work on this standard, or where do we standardize this?
- Need a Common Cost Model for Coordination amongst layers

I/O Protocol Coordination Standards Needed for the following

- Sharing of QoS Class (Gold, Silver, Bronze etc) Information across Layers (tag each I/O)
- Share Caching hints across layers
 - E.g. NFS 4.2 fadvise(), SCSI Disable Page Out
- Share Encryption/Dedup Hashes across layers to get the best of storage efficiency and encryption
- Sharing storage efficiency info (e.g. a priori knowledge that there is a clone relationship and so prepopulate the sharing map at the host)

- NVMs are accelerating the bifurcation of Capacity and IOPs optimized storage architectures
- Need to take a holistic end to end data management view to manage both IOPs and Capacity layers
- SLO Based Management Notions hide the multi-layer, multi-vendor issues from storage subscribers
- Standards have a key role to play for service definition, control and I/O interactions between layers

- Steve Byan
- David Dale
- Fred Knight
- Madalin Mihailescu
- Bala Ramachandran
- Doug Santry