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Linux Kernel Process




What Is LiInux?

* A set of projects and companies

» Various free and fee-based distributions
 Hardware vendors from handsets up to mainframes
 Many different development communities

 Can be along road to get a new bit of hardware
enabled

* Open source code allows any party to write their own
file system or driver

 Different vendors have different paths to full support

* No single party can promise your feature will land in all
distributions




Not Just the Linux Kernel

« Most features rely on user space components

 Red Hat Enterprise Linux (RHEL) has hundreds of
projects each with

 |ts own development community (upstream)
 |ts own rules and processes
* Choice of licenses

* Enterprise Linux vendors
 Work in the upstream projects

* Tune, test and configure
e Support the shipping versions
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The Life Span of a Linux Enhancement

* Origin of a feature

* Driven through standards like T10 or IETF

 Pushed by a single vendor

 Created by a developer or at a research group
* Proposed in the upstream community

e Prototype patches posted

 Feedback and testing

e Advocacy for inclusion
 Move into a “free” distribution

e Shipped and supported by an enterprise distribution I



The Linux Community I1s Huge

e Most active contributors in 3.7 kernel — lines
changed:

« Red Hat-18.2%

* No affiliation — 9.3%
 Unknown — 8.3%

« Cavium —5.4%

e IBM- 4.5%

e Intel- 3.9%

e Linaro - 3.4%

 Texas Instruments — 3.3%
« ARM- 2.9%

* No pure storage company in the top 20
o Statistics from: http://lwn.net/Articles/527191
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Linux and Current SSD Devices
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Early SSD's and Linux

e The earliest SSD's look like disks to the kernel

* Fibre channel attached high end DRAM arrays (TMS,
etc)

 S-ATA and SAS attached FLASH drives
* Plugged in seamlessly to the existing stack

* Block based IO
* |OP rate could be sustained by a well tuned stack
» Used the full block layer
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PCl-e SSD Devices

 Push the boundaries of the Linux IO stack

e Some devices emulated AHCI devices

 Many vendors created custom drivers to avoid the
overhead of using the whole stack

* Performance challenges

 Linux block based IO has not been tuned as well as
the network stack to support millions of IOPS

* |O scheduling was developed for high latency devices
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Tuning Linux for an SSD
- Terminal =k

File Edit View Search Terminal Help

bash-4.2% 1s /sys/block/sda/queue/

add_random max_hw sectors kb optimal io size
discard granularity max_integrity segments physical block size
discard max bytes max_sectors kb read ahead kb
discard zeroes data max_segments rotational

hw sector size max_ segment size rg_affinity

iosched minimum io size scheduler

lostats nomerges write same max bytes

logical block size nr_reguests
bash-4.2% |}

« Take advantage of the Linux /sys/block parameters
 rotational is key
« Aligment fields can be extremely useful
e http://mkp.net/pubs/storage-topology.pdf

* Almost always a good idea not to use CFQ




The Linux 1I/O Stack Diagram

wversion 1.0, 2012-06-20

outlines the Linux I/O stack as of Kernel version 3.3
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The Linux I/O Stack Diagram (wversion 1.0, 2012-06-20)
http/fwww.thomas-krenn.com/en/oss/linux-io-stack-diagram.html
Created by Werner Fischer and Georg Schinberger )

License: CC-BY-5A 3.0, see httpi//fcreativecommons.org/flicenses/by-sas3.0/
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Current Challenges with NVM Devices
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Performance Limitations of the Stack

 PCI-e devices are pushing us beyond our current
|OP rate

* Looking at a target of 1 million IOPS/device

* Working through a lot of lessons learned in the
networking stack

* Multiqueue support for devices

* |O scheduling (remove plugging)

« SMP/NUMA affinity for device specific requests
* Lock contention

* Some fixes gain performance and lose features !



Device Driver Choice

* Will one driver emerge for PCl-e cards?

 NVMe: http://www.nvmexpress.org

SCSI over PCI-e: http://www.t10.0org/members/w_sop-.htm

Vendor specific drivers

Most Linux vendors will end up supporting a range of
open drivers

 Open vs closed Source drivers

* Linux vendors have a strong preference for open
source drivers

* They ship with the distribution, no separate installation

e Our support & development teams can fix thi
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http://www.nvmexpress.org/
http://www.t10.org/members/w_sop-.htm

Performance & Driver Issues Cross

- Groups
*Developers focus In relatively narrow areas of

the kernel

*SCSI, S-ATA and vendor drivers are all different
teams

*Block layer expertise is a small community

*File system teams per file system

Each community of developers spans multiple

companies



Caching Implementation Choice

 Bcache from Kent Overstreet at Google is moving into
the upstream kernel

- http://bcache.evilpiepirate.org
* A new device mapper's dm-cache target

- Simple cache target can be a layer in device mapper
stacks.

- Modular policy allows anyone to write their own policy
- Reuses the persistent-data library from thin provisioning

- https://www.redhat.com/archives/dm-devel/2012-
December/msg00029.html

* Vendor specific caching schemes (STEC)



http://bcache.evilpiepirate.org/

Future Challenges
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Non-Block NVM Technology

« DRAM is used to cache all types of objects — file
system metadata and user data

* Moving away from this model is a challenge
* |O sent in multiples of file system block size

* Rely on journal based or btree based updates for
consistency

 Must be resilient over crashes & reboots

* On disk state is consistent and perfect and not in sync
with DRAM view

 MRAM class devices do not need block IO
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Thought Experiments

 Tmpfs is a DRAM only file system

e Just refuses to do write back when asked
No crash consistency or backing store

Endian/size issues forbid cross platform sharing

Linux VFS does not tolerate corruption well
 Must map NVM device to the same address each boot
» Separate metadata and user data

» Use traditional virtual block device for metadata
* Bypass page cache for updating user data




Resources & Questions

 Resources

* Linux Weekly News: http://lwn.net/

» Mailing lists like linux-scsi, linux-ide, linux-fsdevel, etc
» Storage & file system focused events

 LSF workshop

 Linux Foundation events
e Linux Plumbers

* IRC

e JIrc.freenode.net
e Jrc.oftc.net
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