Linux & NVM
File and Storage System Challenges

Ric Wheeler

Senior Engineering Manager
Kernel File Systems

Red Hat, Inc.

Overview

The Linux Kernel Process

Linux Support for SSD Devices
Current Challenges with NVM Devices
Future Challenges

e

Linux Kernel Process

What Is LiInux?

* A set of projects and companies

» Various free and fee-based distributions
 Hardware vendors from handsets up to mainframes
 Many different development communities

 Can be along road to get a new bit of hardware
enabled

* Open source code allows any party to write their own
file system or driver

 Different vendors have different paths to full support

* No single party can promise your feature will land in all
distributions

Not Just the Linux Kernel

« Most features rely on user space components

 Red Hat Enterprise Linux (RHEL) has hundreds of
projects each with

 |ts own development community (upstream)
 |ts own rules and processes
* Choice of licenses

* Enterprise Linux vendors
 Work in the upstream projects

* Tune, test and configure
e Support the shipping versions

5

The Life Span of a Linux Enhancement

* Origin of a feature

* Driven through standards like T10 or IETF

 Pushed by a single vendor

 Created by a developer or at a research group
* Proposed in the upstream community

e Prototype patches posted

 Feedback and testing

e Advocacy for inclusion
 Move into a “free” distribution

e Shipped and supported by an enterprise distribution I

The Linux Community I1s Huge

e Most active contributors in 3.7 kernel — lines
changed:

« Red Hat-18.2%

* No affiliation — 9.3%
 Unknown — 8.3%

« Cavium —5.4%

e IBM- 4.5%

e Intel- 3.9%

e Linaro - 3.4%

 Texas Instruments — 3.3%
« ARM- 2.9%

* No pure storage company in the top 20
o Statistics from: http://lwn.net/Articles/527191

7

Linux Storage & File & MM

Summit 2012

Linux and Current SSD Devices

e

Early SSD's and Linux

e The earliest SSD's look like disks to the kernel

* Fibre channel attached high end DRAM arrays (TMS,
etc)

 S-ATA and SAS attached FLASH drives
* Plugged in seamlessly to the existing stack

* Block based IO
* |OP rate could be sustained by a well tuned stack
» Used the full block layer

10

PCl-e SSD Devices

 Push the boundaries of the Linux IO stack

e Some devices emulated AHCI devices

 Many vendors created custom drivers to avoid the
overhead of using the whole stack

* Performance challenges

 Linux block based IO has not been tuned as well as
the network stack to support millions of IOPS

* |O scheduling was developed for high latency devices

11

Tuning Linux for an SSD
- Terminal =k

File Edit View Search Terminal Help

bash-4.2% 1s /sys/block/sda/queue/

add_random max_hw sectors kb optimal io size
discard granularity max_integrity segments physical block size
discard max bytes max_sectors kb read ahead kb
discard zeroes data max_segments rotational

hw sector size max_ segment size rg_affinity

iosched minimum io size scheduler

lostats nomerges write same max bytes

logical block size nr_reguests
bash-4.2% |}

« Take advantage of the Linux /sys/block parameters
 rotational is key
« Aligment fields can be extremely useful
e http://mkp.net/pubs/storage-topology.pdf

* Almost always a good idea not to use CFQ

The Linux 1I/O Stack Diagram

wversion 1.0, 2012-06-20

outlines the Linux I/O stack as of Kernel version 3.3

direct I/O
(O_DIRECT)

(anony)
[Applications (Processes) 1 e
e p— p— — malloc
o~ o i —_—
= = = = 2 :
o = =, 5 =
=N = = > S
VFS
block based FS Network FS pseudo FS special
@xtd Ext3) @xtd (NFS) CodD GED G @ PuposeFS Page
(xfs) (btrfs) (ifs) EmbR (o (pipefs) (futexfs) |tMpPfs) ramfs) Cache
(isc9660) (devtmpfs)
ocf=) Wsbfs) (-3
stackable

1 L - network

Block 1I/O Layer
‘ optional stackable dewvices on top

of “normal” block devices — work on bios

BIOs (Block 1I/O)

1I/O Scheduler
‘ maps bios to requests ‘

[cfq | ([deadline) [noop)

request-based
dewvice mapper targets

SCSI upper layer

sysfs
(transport attributes)

Transport Classes

[sScCsi rnid layer]

Y
hooked in Device Drivers
(hook in similar like
stacked devices like
mdraid/device mapper do)

==

((@heh @ta_pix)

SCSI low layer

ﬂ-

= T T IT=

etwork

B S 8

Physical

devices

s T g

The Linux I/O Stack Diagram (wversion 1.0, 2012-06-20)
http/fwww.thomas-krenn.com/en/oss/linux-io-stack-diagram.html
Created by Werner Fischer and Georg Schinberger)

License: CC-BY-5A 3.0, see httpi//fcreativecommons.org/flicenses/by-sas3.0/

13

Current Challenges with NVM Devices

e

Performance Limitations of the Stack

 PCI-e devices are pushing us beyond our current
|OP rate

* Looking at a target of 1 million IOPS/device

* Working through a lot of lessons learned in the
networking stack

* Multiqueue support for devices

* |O scheduling (remove plugging)

« SMP/NUMA affinity for device specific requests
* Lock contention

* Some fixes gain performance and lose features !

Device Driver Choice

* Will one driver emerge for PCl-e cards?

 NVMe: http://www.nvmexpress.org

SCSI over PCI-e: http://www.t10.0org/members/w_sop-.htm

Vendor specific drivers

Most Linux vendors will end up supporting a range of
open drivers

 Open vs closed Source drivers

* Linux vendors have a strong preference for open
source drivers

* They ship with the distribution, no separate installation

e Our support & development teams can fix thi

16

http://www.nvmexpress.org/
http://www.t10.org/members/w_sop-.htm

Performance & Driver Issues Cross

- Groups
*Developers focus In relatively narrow areas of

the kernel

*SCSI, S-ATA and vendor drivers are all different
teams

*Block layer expertise is a small community

*File system teams per file system

Each community of developers spans multiple

companies

Caching Implementation Choice

 Bcache from Kent Overstreet at Google is moving into
the upstream kernel

- http://bcache.evilpiepirate.org
* A new device mapper's dm-cache target

- Simple cache target can be a layer in device mapper
stacks.

- Modular policy allows anyone to write their own policy
- Reuses the persistent-data library from thin provisioning

- https://www.redhat.com/archives/dm-devel/2012-
December/msg00029.html

* Vendor specific caching schemes (STEC)

http://bcache.evilpiepirate.org/

Future Challenges

e

Non-Block NVM Technology

« DRAM is used to cache all types of objects — file
system metadata and user data

* Moving away from this model is a challenge
* |O sent in multiples of file system block size

* Rely on journal based or btree based updates for
consistency

 Must be resilient over crashes & reboots

* On disk state is consistent and perfect and not in sync
with DRAM view

 MRAM class devices do not need block IO

20

Thought Experiments

 Tmpfs is a DRAM only file system

e Just refuses to do write back when asked
No crash consistency or backing store

Endian/size issues forbid cross platform sharing

Linux VFS does not tolerate corruption well
 Must map NVM device to the same address each boot
» Separate metadata and user data

» Use traditional virtual block device for metadata
* Bypass page cache for updating user data

Resources & Questions

 Resources

* Linux Weekly News: http://lwn.net/

» Mailing lists like linux-scsi, linux-ide, linux-fsdevel, etc
» Storage & file system focused events

 LSF workshop

 Linux Foundation events
e Linux Plumbers

* IRC

e JIrc.freenode.net
e Jrc.oftc.net

22

http://lwn.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

