

ZUFS

Simplifying the Development of PM-based File Systems

Dr. Amit Golander, NetApp

Background

- Plexistor (acquired by NetApp)
 - PM-based FS pioneer since 2013
 - Contributing some of our IP
- Our PM-based FS approach:
 - Support legacy applications
 & Enable NPM (e.g. SPDK)
 - Feature rich
 - Integrate with NetApp product portfolio

Kernel Vs. User Space FS Implementation

Kernel	User space
Fast (shortest path)	Portable
	Resilient (contained)
	Simpler to add functionality & Debug
	Fewer licensing restrictions

The desired missing link:

Near-memory speed Kernel-to-User bridge

Why not extend FUSE to PM?

FUSE architecture is great for HDDs and ok(ish) for SSDs, but not suitable for PM

\$/G	HDD B	Flash	PM Memory Latency
Ψ	TCP		RDMA
	FUSE		
		FUSE	ZUFS
Design Assumptions	Typical medias	Built for HDDs & extended to Flash	Built for PM/NVDIMMs and DRAM
	SW Perf. goals	Secondary (High latency media)Async I/O Throughput	SW is the bottleneckLatency is everything
	SW caching	Slow media -> Rely on OS Page Cache	Near-memory speed media -> Bypass OS Page Cache
	Access method	I/O only	I/O and mmap (DAX)
	Cost of redundant copy / context switch	Negligible	The bottleneck -> Avoid copies, queues & remain on core
	Latency penalty under load	100s of μs	3-4 μs

ZUFS Features & Architecture

- ♦ Low latency & Efficient
 - Core & L1 cache affinity
 - Zero data copy
- Manages devices
 - Optimal pmem access
 - NUMA aware
 - Data mover to lower tier devices
- Page table mapping supports I/O & DAX semantics
- Misc
 - Async hook available
 - System service

Preliminary Results (for PM)

FUSE Vs ZUFS Penalty (PM, DirectIO)

- Measured on
 - Dual socket, XEON 2650v4 (48HT)
 - DRAM-backed PMEM type
- Random 4KB DirectIO write access

Summary

- ZUFS is a Kernel-to-User bridge designed for PM
 - Enables NetApp solutions
- Being contributed upstream
 - Hope to accelerate PM adoption and innovation
 - Link to Github (TBD)
- You're welcome to use, review and contribute code
 - zufs@netapp.com

Thank you