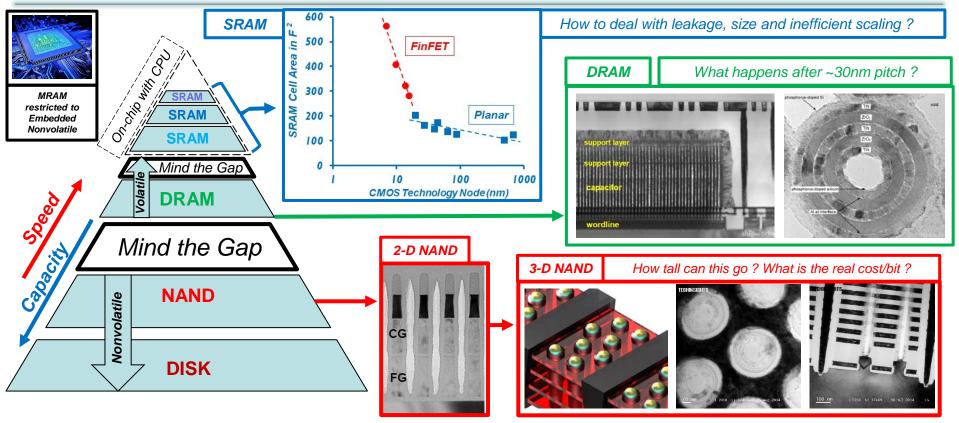


Unleashing MRAM as Persistent Memory

Andrew J. Walker PhD Spin Transfer Technologies

Contents



The Creaking Pyramid

- Challenges with the Memory Hierarchy
- What and Where is MRAM ?
- State of the Art pMTJ
- Unleashing MRAM
- MRAM Unbound

The Creaking Pyramid

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

References: S.H. Kang et al., IEDM17., Various IEDMs; D. James, ASMC 2013; Techinsights 2014

3

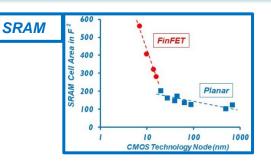
Challenges within the Memory Hierarchy

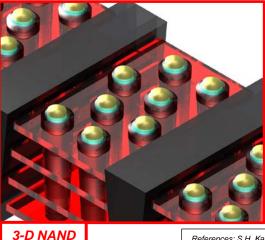
♦ SRAM

- Ever larger cache capacities needed
- Inefficient scaling in FinFET CMOS
- Large leakage currents dominating power dissipation

DRAM

- Scalability reaching fundamental limits close to 30 nm pitch
- Refresh power dissipation only getting worse
- Not monolithically 3-D stackable

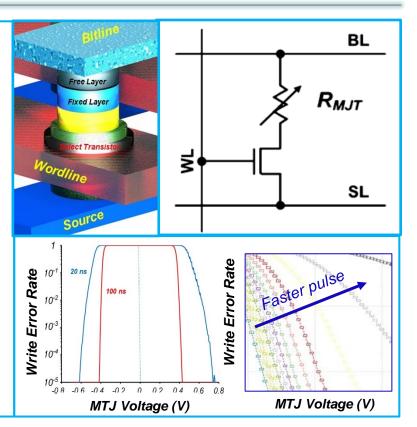

NAND


- 3-D transition made but how tall can it go?
- Can it be laterally shrunk ?
- What is the real cost per bit?

The Gaps

- Does 3D XPoint[™] fit the bill ?
- Can ReRAM really be made to work ?
- What else can fill The Gaps ?

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.



References: S.H. Kang et al., IEDM17., D. James, ASMC 2013

What is MRAM ?

Spin-Transfer Torque Magnetic RAM

- A magnetic ReRAM using a perpendicular Magnetic Tunnel Junction (*pMTJ*)
- Writing: flip <u>M</u>_{free} vector using electron spin to be parallel or anti-parallel with <u>M</u>_{fixed}
- Writing is stochastic <u>highly unusual</u> for solid-state memory with mathematical description
- Reading: monitor current through MTJ
 - <u>M</u>_{fixed} and <u>M</u>_{free} parallel gives low resistance
 - \underline{M}_{fixed} and \underline{M}_{free} anti-parallel gives higher resistance
- Physics: the relative directions of <u>M</u>_{fixed} and <u>M</u>_{free} alter the Quantum Mechanical tunneling <u>transmission</u> <u>probability</u> through a thin MgO layer resulting in a <u>resistance change</u>

Emerging as the embedded NV memory of choice in advanced CMOS

- Lower voltage and fewer masks than traditional Flash
- But.... Stochastic behavior limiting MRAM to embedded NV
 - Low <u>Write Error Rates</u> need <u>high switching current</u> and <u>long write pulses</u> which cause MgO <u>wearout</u> which limits <u>endurance</u>
- And...Retention and endurance are strongly inversely linked
 - NV <u>retention</u> needs stiff <u>M</u>_{free} which needs <u>high switching current</u> which causes MgO <u>wearout</u> which limits <u>endurance</u>
- Is MRAM confined to the embedded NV "cage" ?

State of the Art pMTJ

- Retention Endurance Switching Current engineering through:
 - Scaling
 - Magnetic materials engineering

Scaled soft magnetic pMTJ allows:

- Lower switching current
- Lower write power dissipation
- High endurance
- Smaller bitcells
- Some level of persistence

"Conservation of Misery"

- Are R_{low} and R_{high} sufficiently separated ?
- Manufacturing control and distributions
- Are SRAM/DRAM really replaceable ?
- Are The Gaps Fillable ?
- What can be done to help unleash MRAM?

IBM/Samsung***

414 with the 507 ADM 35 DL 39 WUS

10 nm

Conventional

Conventional (Main memory & eNVM)

State Memory: $\Delta > 60$ C : $\Delta \sim 60$

∆ Engineered for Cache memory

 $\Lambda = 40 \sim 50$

Conventional

Scalin

with Δ engineering Larger current

Time

 $\Delta: 70 \sim 90$

 $2 \therefore \Lambda < 40$

MTJ diameter

Enhance size dependence

Larger Memory Cell

50.7µA

Current

Factor (Δ)

Thermal Stability

100.0

80.0

(**Y**n) 60.0

WRITE (

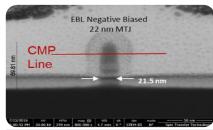
20.0

∆ engineered

Smaller curren Toshiba**

Toshiba**

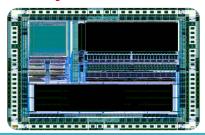
P write


AP write

•

Unleash MRAM with Spin Transfer Technologies

Unique Facility



<u>Smaller pMTJ</u> 10ns R/W times Sub-20nm pillars Gb Densities Advanced process nodes Partnered w/TEL

Unique Magnetics Polarizer

Patented pMTJ Enhancement Faster Switching Lowers R/W current Critical for smaller geometries Heavily Patented

Unique Circuits

Endurance Engine Increases Endurance by up to six orders Eliminates R/W Errors Shortens time to high yield.

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

9

Unleash MRAM with Spin Transfer Technologies

♦ STT's **Engine** – The "SanDisk of MRAM" and The Benefit of Synergy

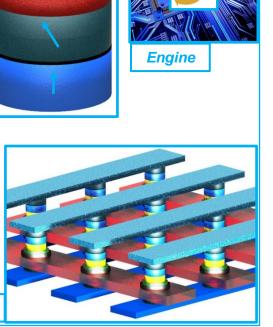
- Significantly reduces the switching current requirements
- Enhances speed to 10ns
- Boosts endurance by 5 to 6 orders of magnitude with no retention change .
- Allows unique embedded NV and SRAM-like capabilities .
- Tuned to anyone's MRAM .
- Purely circuit-based with no materials or process changes .
- No user-visible errors

STT's **Polarizer** ♦

- Significantly reduces switching current requirements
- Increased switching efficiency .
- Enhances free layer switching speed .
- Enhances read disturb stability

STT's Magnetics ♦

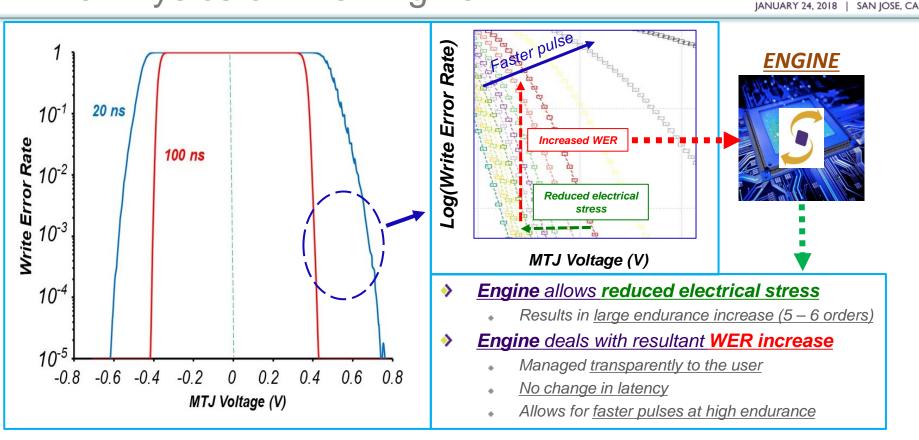
Local highly flexible/fast MRAM fab – capable of 1x/2x nm pMTJs


Magnetics

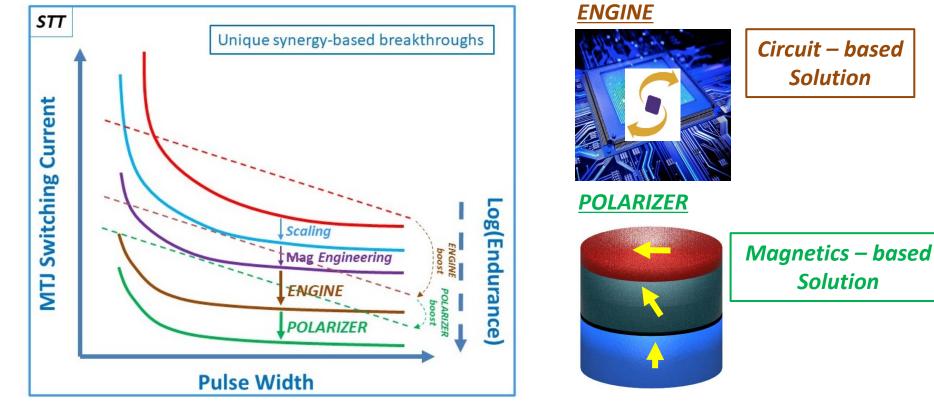
High Density

BEOL MTJ integration

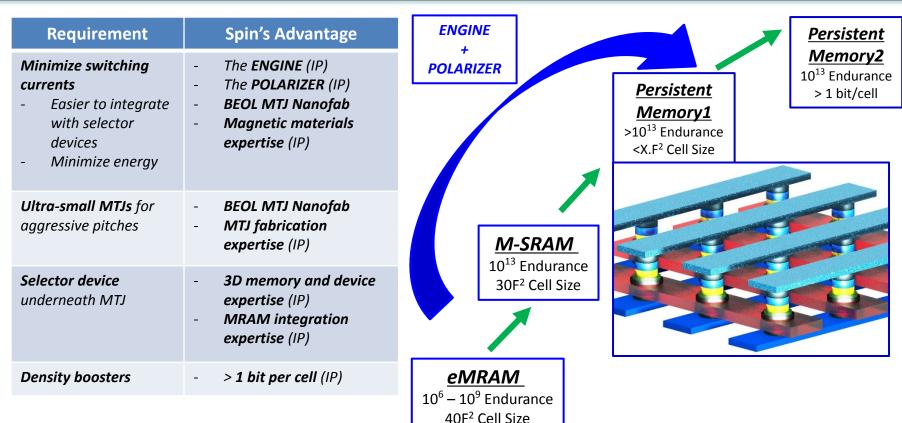
STT's High Density Persistent Memory and Magnetic DRAM ♦


- Selector devices/processes
- High density magnetics

Polarizer

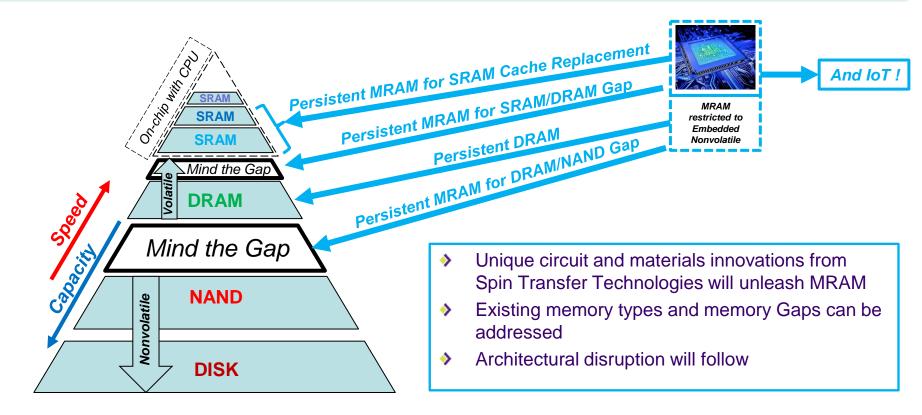

The Physics of The Engine

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.


SAN IOSE, CA

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

Unleash MRAM with Spin Transfer Technologies


© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

SAN IOSE, CA

IANUARY 24, 2018

MRAM Unbound

